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Executive Summary 

The Open Implementation Toolkit for Creating Adaptable Distributed Applications 
project developed enabling technologies for building intrusion-aware, adaptable 
applications, i.e., applications that can recognize intrusions, attacks, and malfunctions, 
and adapt to avoid them or reduce their impact, thereby increasing their chances for 
survival. The project developed and packaged these technologies into the QuO Open 
Implementation Toolkit, containing specification languages and code generators, a 
runtime kernel, and libraries of reusable components that support measurement, control, 
and adaptation at many levels of system operation. The project also demonstrated these 
technologies by developing adaptive, survivable example applications using a variety of 
intrusion detection, security, and property managers. These applications, developed using 
the QuO toolkit, demonstrate the concepts underlying advances in infrastructure to detect 
potential intrusions and adapt to recover from, avoid, or protect against them. 
The QuO Open Implementation Toolkit consists of the following components: 

• Description languages for specifying operating ranges, implementation alternatives, 
adaptation strategies, and the system resources and conditions that must be monitored 
at runtime to detect possible intrusions, malfunctions, and attacks; and code 
generators for producing adaptation components from the descriptions. The toolkit 
provides three description languages: the contract description language, the structure 
description language, and the connection specification language. 

• A runtime kernel to monitor the appropriate system resources and conditions, 
recognize when an implementation is operating outside its acceptable range, and help 
the application reconfigure (e.g., change to an alternate implementation) to avoid the 
problem. 

• System condition objects that interface to property managers, mechanisms, and 
resources, such as intrusion detection systems and dependability managers. 

• An ORB gateway shell, for supporting adaptation and control at the inter-ORB 
transport layer 

• Instrumentation support, including support for gathering information, inserting 
probes, and passing data along with round-trip method calls. 

As a major component of this project, we demonstrated the use of the Open 
Implementation Toolkit for developing adaptive, survivable applications. We developed 
several example applications that exhibit the following characteristics improving their 
survivability: 

• Adaptation for survival. These applications can adapt to changing conditions in their 
environment, including reported intrusions and changes in security policies. This 
enables them to avoid potential intrusions, continue in the face of degraded service, 
and recover from intrusions and faults. 

• Intrusion- and security-awareness. These applications can aid intrusion detection 
systems (IDSs) and security managers by recognizing application-level patterns of 
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usage that might indicate intrusions or security breaches and by gathering information 
useful to IDSs and security systems. 

• Integration and interfacing of multiple IDSs at the application level. An application 
built within the QuO framework can easily interface to multiple mechanisms and 
managers, including multiple IDSs, through the QuO system condition interfaces. 

• Integration of IDSs and other resource managers. The QuO toolkit provides support 
for building applications that can integrate interactions with managers for many 
different complementary dimensions (e.g., security, intrusion detection, and 
dependability) to achieve higher levels of service and adaptability. 

The research performed within this project not only developed a powerful extension to 
the emerging area of distributed object middleware and a toolkit that supports it, but also 
demonstrated its use for an important class of problems in an important class of 
applications, namely the survivability concerns of critical applications. It also provided 
important experience about the nature of middleware adaptation, application assisted 
intrusion detection, and the feasibility of an approach to survivability that integrates 
together a number of more localized protection and security mechanisms to achieve more 
effective coverage. 
Our research within this project also indicates natural directions for future research to 
build upon what we've accomplished. The adaptive middleware, languages, and 
abstractions that we developed have shown their utility to the extent that we've been able 
to test and demonstrate them. Further research is necessary to apply these to broader 
classes of attacks and other classes of applications, and to determine whether the 
abstractions we've developed are a complete and powerful enough set. Furthermore, 
while we've demonstrated the use of adaptation as a survivability technique, it would be 
useful to explore the nature of appropriate response and survivability strategies. That is, 
not only whether applications should adapt to survive, but how applications can adapt to 
survive certain classes of attacks. In addition, while we've explored the use of certain 
mechanisms, such as replication managers, IDSs, and access control systems, to aid in 
survivability, there are other mechanisms and managers that could be utilized. Some of 
these will be complementary, while others will conflict. The nature of using multiple 
managers and mechanisms and resolving conflict between them is an open area of 
interesting research. Finally, a natural open research topic that needs to be explored is the 
ramifications of using adaptation as a survivability mechanism. Adaptive applications, 
while being more difficult to attack, might also be more difficult for a system to manage. 
Furthermore, adaptation could be as powerful a technique for attacking or masking 
attacks as it is a technique for survival. 



1. Goals of the Open Implementation Toolkit Project 

More and more applications - critical and non-critical, military and commercial - are of in- 
creasing complexity and are deployed in wide-area, heterogeneous networked environments. 
Most of these distributed computing systems are already fragile: they break easily when run un- 
der conditions even slightly different from the environment in which they were tested. Many 
systems are so fragile that even foreseeable conditions, such as network congestion causing a 
remote service request to time out, can lead to system failure. This fragility has become a serious 
problem as our society increasingly relies on distributed systems for both military and commer- 
cial applications. 

Most of these large scale, distributed systems are also increasingly vulnerable to attack. One 
reason is because they usually rely on a single implementation strategy whereas operating condi- 
tions are constantly changing. Another reason is that their distributed, networked nature provides 
more entry points for attackers than the closed controlled systems of previous years. The in- 
creased number of hosts, components, and hardware resources involved in distributed systems 
also increases the number of potential sources of failure. An increasing reliance on COTS prod- 
ucts increases the possibility of attacks - both because the software is well known to attackers 
and because the software's black box nature can hide many vulnerabilities. Finally, as the ven- 
dors for a few products come to dominate the COTS market, the prevalence of those products 
and the resulting homogeneity in architectures, components, and applications increase the poten- 
tial for attack and for propagation of attacks exploiting vulnerabilities of those products. 

Rather than concentrating on point solutions, this project developed enabling technologies for 
developing intrusion-aware, adaptable applications, i.e., applications that can recognize intru- 
sions, attacks, and malfunctions, and adapt to avoid them, thereby increasing their chances for 
survival. The Open Implementation Toolkit (OIT) supports the development of applications that 
can 

• Specify their operating modes, needs, and normal ranges of behavior; 
• Measure conditions in the system to determine whether they are operating within expected 

ranges; 
• Adapt and reconfigure to recover from and avoid potential attacks; and 
• Control available resources and mechanisms that aid in survivability, such as intrusion 

detection systems, security managers, and fault tolerance mechanisms. 

2. Approach 

The research in the OIT project built upon several emerging areas of research: 

•   Primary among these was research in Quality of Service (QoS) for distributed object sys- 
tems undertaken by BBN in the Quorum (DARPA/ITO) AQuA and DIRM projects. Un- 
der these projects, BBN laid a basis for technology entitled Quality Objects (QuO) in 
which distributed applications could measure and control QoS aspects: availability in the 
case of AQu A and managed bandwidth in the case of DIRM. 



• The concepts of open implementation influenced the OIT project. In open implementation, 
components of a distributed system are not treated as black boxes, as they historically are. 
Instead, information about their internal implementation and parameterized interfaces to 
influence their operation are made available. 

• Finally, we were also influenced by emerging research in aspect-oriented programming, 
in which cross-cutting aspects of a program's operation are specified in special purpose 
languages and weaved into the application code by code generators. 

Under this project, BBN developed a toolkit for the QuO framework that supports the devel- 
opment of adaptive, survivable distributed applications, i.e., applications that can recognize when 
they are operating outside acceptable ranges (indicating malfunctions or possible attacks) and 
adapt to avoid the problem areas. The toolkit allows an object programmer to develop distributed 
applications, objects, and subsystems with multiple implementations, each with distinct charac- 
teristics. 

BBN's approach was as follows: 

1) develop the components of the QuO Open Implementation Toolkit, including the following: 

• Description languages for specifying operating ranges, implementation alternatives, ad- 
aptation strategies, and the system resources and conditions that must be monitored at 
runtime to detect possible intrusions, malfunctions, and attacks; and code generators for 
producing adaptable applications from the descriptions. 

• A runtime kernel to monitor the appropriate system resources and conditions, recognize 
when an implementation is operating outside its acceptable range, and help the applica- 
tion reconfigure (e.g., change to an alternate implementation) to avoid the problem. 

• System condition objects that interface to property managers, mechanisms, and resources, 
such as intrusion detection systems and dependability managers. 

2) Integrate with QuO components developed under other projects, including the following: 

• An ORB gateway shell, for supporting adaptation and control at the inter-ORB transport 
layer 

• Instrumentation support, including support for gathering information, inserting probes, 
and passing data along with round-trip method calls. 

3) Demonstrate the use of the Open Implementation Toolkit by developing adaptive, survivable 
examples that interface to existing intrusion detection systems and property managers to re- 
ceive information about potential intrusions and faults, and to provide guidance that will help 
the applications adapt for survivability. 

3. Programmatics 

3.1.    Participants 
BBN Technologies was the prime contractor on this effort, with the University of Illinois as 

subcontractor. The technical efforts were performed and managed within the Distributed Systems 
department of BBN. The principal investigator was Dr. Joseph Loyall, with significant contribu- 



tions by Dr. Richard E. Schantz, Dr. Partha Pal, Dr. John Zinky, Rodrigo Vanegas, Michael 
Atighetchi, and James Megquier. 

Dr. William Sanders was the principal investigator of the University of Illinois part of the ef- 
fort, with major contributions by Dr. Michel Cukier, Jennifer Ren, and Paul Rubel. 

3.2. Duration 
The Open Implementation Toolkit for Creating Adaptable Distributed Applications project 

commenced July 15, 1997. It was originally scheduled to run until July 14, 2000. However, 
DARPA/ITO's Information Survivability program, under which the OIT project fell, was short- 
ened, ending in early calendar year 2000. 

3.3. Software deliveries 
We delivered three versions of the OIT software to the Government. The first version was de- 

livered to the Government on October 1,1998 with source code, software, examples, and docu- 
mentation. This version, version 1.0, contained the following features and capabilities: 

• A QuO runtime kernel, including GUI visualization capability 
• QuO code generators for Quality Description Languages (QDL), including Contract Defi- 

nition Language (CDL) and Structure Definition Language (SDL) components 
• Built-in instrumentation for QuO-enhanced CORBA applications 
• Support for Java and C++ applications 
• A library of sample and reusable QuO system condition objects 
• Several application and QoS property examples that demonstrate how to build adaptable 

applications and QoS mechanisms using the QuO framework 
• On-line documentation and how-to descriptions. 

The second version of the OIT software was delivered to the Government on July 23,1999 
with source code, software, examples, and documentation. This version, version 2.0, contained 
all the functionality of version 1.0 plus the following improved and additional features and capa- 
bilities: 

• The QuO toolkit completely supported both the Visibroker and TAO ORBs. 
• Major improvements to QuO's Structure Description Language (SDL) 
• A new QDL sublanguage, the Connection Setup Language (CSL) 
• Powerful run-time instrumentation for system validation 
• A variety of development environment and toolkit ease-of-use improvements 
• Many application and QoS property examples that demonstrate how to build applications 

and QoS mechanisms using the QuO Toolkit 
• On-line documentation and how-to descriptions. 

The third version of the OIT software, version 2.1, was released on November 12, 1999 and 
will be delivered to the Government simultaneously with this Final Report, to coincide with the 
end of the Open Implementation Toolkit project. 

The Open Implementation Toolkit version 2.1 contains all the functionality of version 2.0 plus 
the following improvements, features, and capabilities: 



• Improvements to the QuO toolkit software, including to the QDL languages, instrumenta- 
tion, and error reporting. 

• Integration with TAO vl.O, the first commercially available version of the TAO ORB. 
• A QuO gateway for integrating different transport layer protocols, mechanisms, and con- 

trols, plus an example gateway instantiation for the RSVP bandwidth management proto- 
col. 

• Support for survivability, using AQuA-based notification interfaces to recognize anoma- 
lous situations. 

• Integration with Network Associates' Object-Oriented Domain Type Enforcement (00- 
DTE) access-control software, providing a QuO-controlled security component. 

• More examples, demonstrations, and documentation. 

4. Adaptive open implementation toolkit 
This section describes the components of the Open Implementation Toolkit. 

4.1.    Introduction and overview 
The Open Implementation Toolkit is a fundamental piece of the Quality Objects (QuO) adap- 

tive framework. The purpose of the toolkit is to support the development of applications that can 
specify the quality of service (QoS) needs, measure the QoS provided and available, control 
mechanisms and resources for providing QoS, and adapt to changing levels of QoS in the sys- 
tem. 

QuO augments CORBA's functional view in a number of ways to support how the functional- 
ity is delivered, as well as to support the adaptive behavior mentioned above. The Open Imple- 
mentation Toolkit provides the core capabilities of the QuO framework and consists of the fol- 
lowing components: 

• Quality Description Languages (QDL) for specifying operating ranges, implementation 
alternatives, adaptation strategies, and the system resources and conditions that must be 
monitored at runtime to detect possible intrusions, malfunctions, and attacks; and code 
generators for producing adaptable applications from the descriptions. 

• A runtime kernel to monitor the appropriate system resources and conditions, recognize 
when an implementation is operating outside its acceptable range, and help the application 
reconfigure (e.g., change to an alternate implementation) to avoid the problem. 

• System condition objects that interface to property managers, mechanisms, and resources, 
such as intrusion detection systems and dependability managers. 

• An ORB gateway shell, for supporting adaptation and control at the inter-ORB transport 
layer 

• Instrumentation support, including support for gathering information, inserting probes, 
and passing data along with round-trip method calls. 

There are three complementary parts to QuO. The first part deals with the constructs needed 
to introduce the concepts for predictable, adaptable behavior into the application program devel- 
opment environment, including flexible specification of desired levels of QoS properties. The 
second part deals with providing runtime middleware to ensure appropriate behavior, including 



collecting information and coordinating any needed changes in behavior. The third part deals 
with the inserting the mechanisms for achieving and controlling each particular aspect of QoS 
that is to be managed, including aggregate allocation and control policies. 

QuO's functional path is a superset of the CORBA functional path as illustrated in Figure 1. 
QuO interposes a delegate component in the client's functional path, whose purpose is to do the 
middleware-level QoS decision making. In a traditional CORBA application, a CORBA client 
would directly use the ORB to obtain an object reference and a CORBA server would create an 
implementation object and register it with the ORB. In a QuO application, QuO clients and serv- 
ers create connector objects and call connect () on them. Each connector object is simply a 
delegate object (with the IDL interface of its remote object) that knows how to connect itself to 
the QuO infrastructure. As a result of a successful connect ()  call, the QuO application has a 
connected delegate. A QuO client then uses it as if it were the object reference, i.e., a client-side 
delegate provides the same interface as a client-side proxy or stub. A QuO servant uses it as if it 
were the implementation object, i.e., a server-side delegate provides the same functionality as 
the implementation object. The delegate and connector code is automatically generated by the 
QuO code generators based on the IDL and QDL specifications. 

To use QuO, a client only has to modify the way it obtains the object reference, not all its in- 
vocations. Similarly, on the server side, only the creation and registration of the implementation 
object needs to be modified. Interposing the delegate in this relatively transparent manner allows 
the client's functional path to be instrumented and controlled in ways described below. 

A QuO contract provides a means to specify what the client requires or desires in terms of 
QoS, as well as a means for it to be informed of what level of QoS it is actually receiving. This 
provides the basis for the client to cleanly specify, in an application-friendly manner, what to do 
when what it is actually receiving diverges from its expectations. QuO's Contract Description 

Client 
 Logical Method Call  
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ORB ProxJ>    / Mechanism/Property 
 Manager / -y 
Z ^ Z > <SJ ORB Proxy 

ORB ORB 

Client 

Gateway^- _^,—v_v -^Gateway 

Network 

Network Server 

Figure 1: QuO Architectural Components 
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language is used for writing contracts, and is described in Section 4.2.1. The contract can specify 
callbacks to the client to alert it to when conditions have changed sufficiently to warrant the cli- 
ent being notified (and possibly adapting on its own behalf). QuO system conditions are objects 
that project a value into a contract. As such, they are a way for the contract to integrate informa- 
tion from different sources. Looked at from another point of view, they are the mechanism for 
connecting complex information sources into the QuO context in a relatively simple manner. 
System condition objects also provide a way for a contract to control or influence the way a 
property such as bandwidth or replication is managed, by serving as a conduit for passing on the 
client's requested level of service to the appropriate property manager. 

Mechanism Managers (aka Property Managers) are responsible for managing a given QoS 
property (such as the availability property via replication management or the controlled through- 
put property via RSVP reservation management) for a set of QuO-enabled server objects on be- 
half of the QuO clients using those server objects. 

The remainder of this Section describes the OIT components. Section 4.2 describes the Qual- 
ity Description Languages and code generators. Section 4.3 describes the runtime kernel. Section 
4.4 describes system condition objects. Section 4.5 describes QuO's instrumentation library. Fi- 
nally, Section 4.6 describes QuO's object gateway. 

4.2.    Quality description languages (QDL) 
QDL consists of three languages: CDL, which describes QuO contracts; SDL, which de- 

scribes selection and adaptation information; and CSL, which provides for connector setup code 
generation. The following sections present an overview of these languages. More detail is 
available in Section 7 and in the following documents, available with the QuO Toolkit software: 

• QuO Toolkit User's and Programmer's Guide 
• QuO Contract Description Language (CDL) Reference Guide 
• Structure Description Language (SDL) Reference Guide 
• QuO Connector Setup Language (CSL) Reference Guide 

4.2.1. The Contract Description Language (CDL) 
CDL is a language for specifying quality of service (QoS) contracts in a distributed object 

computing (DOC) application, currently CORBA applications. Contracts specify the quality of 
service that is desired by the application, the anticipated range of service that might be encoun- 
tered by the application, the system conditions that must be measured and controlled in order to 
achieve or recognize the appropriate QoS, and behavior to trigger when QoS levels change. 
Contracts can exist on the client side of an application, the server side, or both. QuO also sup- 
ports multiple contracts, each of which can specify different dimensions of the QoS to be meas- 
ured. For example, a secure, real-time application might use one contract to measure security in a 
system and another contract to measure the round-trip response time of the remote calls. Simul- 
taneously, we are also exploring the issues of appropriately combining these separate views. 

A QuO contract consists of the following components: 

A set of (potentially nested) operating regions, each representing a possible state of QoS. 
Each region has a predicate indicating whether it is active (the predicate is true) or not (the 
predicate is false). 



contract InvContract( syscond FileAddDeleteValueSC FileAddDeleteValueSCImpl fileAddedOrDeleted, 
syscond IDSValueSC IDSValueSCImpl intruded, 
callback ClientCB clientCallback) 

{ 
syscond probe TimeProbeSCImpl OperationTime(); 

region Normal ((OperationTime <= 500) and (not fileAddedOrDeleted) and (not intruded)) {} 
region TimeSuspect ((OperationTime > 500) and (not fileAddedOrDeleted) and (not intruded)) {} 
region AccessSuspect ((fileAddedOrDeleted and not intruded) or (not fileAddedOrDeleted and intruded)) {} 
region Intrusionlikely (intruded and fileAddedOrDeleted) {} 

transition any->TimeSuspect { asynchronous { clientCaHBack.OperationTimeOut(); } } 
transition any->AccessSuspect { asynchronous { clientCallBack.ImproperAccessDetectedO; } } 
transition any->Normal { asynchronous { clientCallBack.toNormal(); } } 
transition any->IntrusionLikely { asynchronous { clientCallBack.AccessDisabledO; } } 

}; 

Figure 2: A contract to control and measure intrusion awareness 

• Transitions, specifying behavior to trigger when the active region changes. 
• References to system condition objects for measuring and controlling QoS. These are ei- 

ther passed in as parameters to the contract or declared local to the contract. System con- 
dition objects are used in the predicates of regions to measure values of system resources, 
object or client state, etc. and used in transitions to access QoS controls and mechanisms. 

• Callback objects for notifying the client or object. Callbacks are passed in as parameters to 
the contract and are used in transitions. 

The contract organizes the possible states of QoS, the information needed to monitor and 
control QoS, the actions to take when QoS changes, and the times at which information is avail- 
able. The nesting of regions can be used to arrange regions according to logical groupings of in- 
formation or time. For example, a contract can have a set of regions representing the QoS desired 
by an application, each of which has a set of nested regions representing the actual QoS that is 
observed. The outer regions would have predicates consisting of system condition objects that 
interface to the client and object and measure their desired or expected QoS. The nested regions 
would have predicates that consist of system condition objects that interface to and measure sys- 
tem resources. This grouping distinguishes the QoS associated with operating modes of the client 
and object, which will likely change infrequently, from the measured QoS of the system, which 
will probably change more frequently. 

A programmer programs a contract class in CDL, similar to the way a C++ or Java program- 
mer programs an object class instead of an object instance. At runtime, the connection routine 
(programmed using QuO's connection language, CSL) instantiates the contract objects and 
passes in the proper system condition objects and callback objects. 
4.2.1.1 A Simple CDL Example Contract 

The contract in Figure 2 specifies and controls intrusion awareness for an inventory applica- 
tion. The application has four operating modes of escalating suspicion that an intrusion is occur- 
ring. The fileAddedOrDeleted system condition object watches for unauthorized access of 
the file system, while the intruded system condition object interfaces to an intrusion detec- 
tion system (IDS). Meanwhile, the OperationTime system condition object measures the 
time that inventory operations take. 

As long as the file system monitor and the IDS are not reporting anomalies and operations are 
being serviced within a threshold defining reasonable behavior for these operations (500 ms), the 



contract is in the Normal region. When operations are taking too long (i.e., greater than 500 ms), 
but there are still no reported anomalies, the contract will enter the TimeSuspect region. When 
one, but not both, of the file monitor and the IDS monitor report an anomaly, the contract enters 
the AccessSuspect region. Finally, if both monitors report anomalies, meaning that an unauthor- 
ized file access has occurred and that the IDS has detected a potential intrusion, the contract en- 
ters the IntrusionLikely region. 

Transitions between any of these regions will trigger a call to a method on the client- 
CallBack object, to make the application aware of the situation. The keyword any is used to 
indicate that the contract doesnt care in which region the transition originated. All of the client 
notifications are considered asychronous callbacks, i.e., a thread is spawned to make the call to 
the callback, so the transition behavior is not blocked waiting for a return. 

4.2.2. The Structure Description Language (SDL) 
SDL is a language for specifying the adaptive behavior possibilities and strategies for an 

adaptive QuO application. The basic structure of an SDL description is as follows: 

delegate behavior for interface interface_name  and contracts contract_list  is 
del eg ate_variable_declarations 
adapfcive_behavior_descriptions 
defaul t_behavior_description 

end delegate behavior; 

The interface_name must be an interface defined in an IDL file being parsed on the 
same quogen run. The interface name can be fully qualified, i.e., if the interface / is defined 
within a module M then inter f ace_name will be M::I. See the QuO Connector Setup Lan- 
guage (CSL) Reference Guide for further details on how to parse IDL files in a quogen run and 
how to instruct quogen to generate delegates for an interface. 

The con trac t_list must be of the form cl, c2, ... where each ck is the name of a 
contract defined in a CDL file being parsed on the same quogen run. See the QuO Connector 
Setup Language (CSL) Reference Guide for further details on how to include CDL files to be 
parsed in a quogen run. 

The delegate_variable_declarations section allows the programmer (i.e., the 
QoS developer) to specify variables that are initialized during the delegate creation and 
initialization time. These become member variables of the delegate class. Each 
delegate_variable_declaration specifies a local name to which it can be referred 
from within anywhere in the SDL file (i.e., the scope of these variables are the whole SDL file). 

The adaptive_behavior_descriptions section contains a list of method calls 
and/or returns for which the delegate defines alternative behaviors. Each of these in turn 
specifies a list of contract regions and behavior descriptions that, if the contract region is active 
when the method is called and/or returned from, will cause the delegate to execute the 
corresponding behavior. 

The default_behavior_description allows the specification of behavior to be 
executed when any method that is not specified in the SDL description is called. 

More detail about the syntax and semantics of each of these sections is contained in Section 7. 



4.2.3. The Connector Setup Language (CSL) 
CSL is a language for specifying the components comprising a QuO application, how they are 

instantiated, initialized, and hooked together to produce a distributed application with QoS 
measurement, control, and adaptation. CSL specifies the following: 

• The IDL, CDL, and SDL files that must be processed to produce an application, 
• The CORB A objects, system condition objects, contracts, and delegates that need to be in- 

stantiated 
• The way in which the various objects are created and initialized 
• The relationships between the objects, e.g., the system condition objects used by each 

contract, the remote objects wrapped by delegates, and the nesting of contracts or dele- 
gates 

• Any initialization code that should be performed at application setup time. 

Executing the code generator on a CSL file triggers the parsing of the various IDL, CDL, and 
SDL files, similar to a Unix Makefile. It also generates a single Connector class and methods that 
can be called in the application code in place of calls to instantiate or locate the individual re- 
mote object references. CSL allows the QuO programmer to specify arguments that the applica- 
tion will pass into the connector, such as references to an ORB, BOA, or application-specified 
initialization data. 

A QoS programmer programs a connector class in CSL, similar to the way a C++ or Java pro- 
grammer writes a Makefile. The code generator parses the CSL file, triggers parsing of all the 
IDL, CDL, and SDL files, and generates code for a Connector class that, when instantiated, cre- 
ates the relevant objects, connects them, and invokes any relevant initialization code. 

The example CSL description in Figure 3 comes from one of the example applications that 
ships with the QuO toolkit, simple. Simple, as its name suggests, is a simple example of the use 
of QuO in an application. It consists of a single client and a single server. The server for this ap- 
plication maintains one piece of data, an integer variable. The count method adds an integer, 
passed as a parameter, to the value at the server and the countDown method subtracts the inte- 
ger from the server's value. There is a single system condition that can be changed by external 
conditions (such as user intervention) and controls whether the application wants to increment or 
decrement the counter. The contract records whether the system (as controlled by the system 
condition object) is in a state where the client's calls should increment the server, decrement the 
server, or do nothing. 

The first section of the CSL code, Connector Attribute Specifications, describes program- 
mer specified attributes about the generated Connector code. The class specification specifies the 
name of the generated connector class, while the interface specification specifies the name of 
the superclass of the generated connector class. Codeloglevel is a debugging flag, specifying 
how many or how few messages you want to see in the generated code. The value for 
codeloglevel can be "none", "low", or "high". 

Cppinclude is a line to allow you to specify header files to be placed in a #include statement 
at the top of the generated connector code (if C++ is being generated). Multiple files are sepa- 
rated by spaces. Finally, target is a way to specify whether connector code is being generated for 
the client side or the server side. 

The next section, the Include section, specifies the files that comprise a QuO application and, 
therefore, need to be processed by the QuO code generator. These include statements drive the 



/* This is the CSL specification used to setup the connector for simple */ 

/*   Connector Attribute Specifications  */ 
class "SimpleConnector" 
interface       "SimpleConnectorlnterface" 
codeloglevel    "high" 
cppinclude      "CounterCallback.Impl.hh" 
target "client" 
/*  Include section */ 

/* Include cdl files */ 
include "qdl/CounterContract.cdl" 

/* Include sdl files */ 
include "qdl/CounterDelegate.sdl" 

/* Include idl files */ 
include "idl/Counter.idl" 
include "idl/CounterCallback.idl" 

/*  Object Definition section  

/* Define Remote Objects */ 
Counter thisRemoteObj = fileior ("Counter.ior") ; 

/* Instantiate System Condition Objects */ 
ValueSC countDirection = new ValueSCImpl ( "Count Direction" , 

"com.bbn.guo.ValueSC" , 
"com.bbn.quo.ValueSCImpl" ) ; 

/* Instantiate Callback Objects */ 
CounterCallback theCallback = 
new CounterCallbacklmpl ( "Count Direction Callback" ) ; 

/* Instantiate Contracts */ 
quo::Contract contractl = 

new CounterContract ( "Counter Contract" , 
"com.bbn.quo.examples.simple.CounterContract" , 
countDirection , theCallback ) ; 

/* Instantiate Delegates */ 
returndelegate thisDelegate ( thisRemoteObj , contractl ) ; 

/* Function Calls  
dumpior countDirection "CountDirection.ior" ; 

Figure 3: Example CSL specification for an application using QuO 

QuO QDL parsing. All the CDL files, SDL files, and IDL files that need to be processed to gen- 
erate the contract, delegate, and connector code must be specified in this section. Their path- 
names must be specified relative to the directory in which quogen is invoked. In this example, 
the simple example includes one CDL file (qdl/CounterContract.cdl), one SDL file 
(qdl/CounterDelegate.sdl), and two IDL files (idl/Counter.idl and idl/CounterCallback.idl). 

The third section, the Object Definition Section, is the section in which you specify the re- 
mote objects that need to be instantiated, how they are initialized, and how they are hooked to- 
gether. The first statement in this section specifies that an object of type Counter is to be located 
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by reading its CORBAIOR from the file Counterjor. The local variable thisRemoteObj will 
refer to the object during the remainder of the CSL file. 

The next statement creates a system condition object called CountDirection. ValueSC and 
ValueSCImpl are an IDL type and a Java class, respectively, provided by the QuO libraries. The 
next statement creates a callback object. CounterCallback and CounterCallbacklmpl are an 
IDL type and a Java class specific to this application. 

The next statement describes the QuO contract used in this example. All contracts are of type 
quo::Contract but are instantiated using the class name specified in the CDL file, in this case 
CounterContract. A contract instantiation always takes two strings as arguments, plus the sys- 
tem condition objects and callback objects as described in the CDL code. The first argument 
identifies the contract as named "Counter Contract". The second argument identifies the Java 
class of the contract. The third and fourth arguments hook the system condition object, CountDi- 
rection, and the callback object, theCallback, which we created above, into the contract. 

The final statements of the Object Definition Section identify the delegates that need to be 
created, what contracts and objects they wrap, and the delegate that is the top most wrapper 
around the remote object's stub. In this example, we create a single delegate that points to the 
thisRemoteObj remote object reference and uses the contractl contract. 

The final section of the CSL code is the Function Calls section. This allows you to specify a 
set of function or method calls that need to be made as part of the connector code once all the 
objects are created and instantiated. This gives the opportunity to perform some initialization on 
the objects as part of the connector code. In this example, a call to the CSL primitive dumpior is 
made to write the IOR of one of the created objects, the countDirection system condition object, 
to a file. This is so it is accessible outside the example application code. 

4.3.    Runtime kernel 
The QuO kernel is a library of services, implemented in Java, providing the basis for the QuO 

runtime system, contracts, and system condition objects. The kernel library provides two essen- 
tial services: an object factory and a contract evaluator. 

The object factory creates and initializes contract and system condition objects. Currently all 
of these objects are created at the startup of a QuO application, although future QuO applications 
might require dynamically created contracts or system condition objects. The factory is imple- 
mented using reflection in Java, since it is difficult to anticipate at compile time the classes of 
contract or system condition objects that will be used by the runtime system and how many in- 
stances will be instantiated by the delegates. A delegate makes a CORB A call to the QuO kernel 
factory to instantiate an object, i.e., either a contract instance or a system condition object, pass- 
ing the class of the object as a string. The factory locates the corresponding class file and loads it 
if it has not already been loaded. The factory then creates and initializes an instance of the class 
and returns the object reference to the delegate. The kernel maintains a record of the objects used 
by each delegate, so that it can clean up when applications quit or delegates disappear. 

The contract evaluator schedules the evaluation of contract objects in the QuO runtime for a 
given application. A QuO application might involve any number of contract objects, whose 
evaluation can be triggered in the two following ways: 

•   A delegate's premethod or postmethod QoS check - When a client makes a remote 
method call, the call goes to the appropriate delegate. The delegate checks the current 
state of QoS (as represented by the current regions of a contract) to decide what adaptive 
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behavior to select. Likewise, the delegate will often check the state of the contract upon a 
method's return, to decide what to do with the return value. Each of these trigger contract 
evaluation. 

•   A change in an observed system condition - Some of the system condition objects that a 
contract uses to collect data about QoS in the system are observed by the contract (as 
specified in QDL). When the value of any observed system condition object changes, it 
triggers contract evaluation. 

Even though there might be many contracts concurrently ready for evaluation, we expect the 
QuO kernel to consume a small overhead of CPU cycles relative to the application, therefore 
QuO does not concurrently evaluate contracts. Instead, triggering simply marks a contract object 
as ready for evaluation. The contract evaluator is a single high-priority thread that performs a 
round-robin check of all contract objects in the runtime. If a given contract object is marked, the 
evaluator evaluates it before proceeding to the next contract. If evaluation of a particular contract 
is triggered more than once before the evaluator gets to it, the contract is only evaluated once. 

The QuO kernel is flexible about its environment. It can run in its own process or in the same 
process as the application. It can run on the same or a different host as that of the application. 
Finally, any number of applications can share it whether or not they are on the same host. The 
kernel also includes a GUI for displaying the current state of contracts and system condition ob- 
jects. 

4.4.    System Condition Objects 
Every system condition object represents a single system property value, such as time elapsed 

since the last invocation or number of active jobs on a remote host. Contract objects use these 
values to determine the current operating region. In addition, arbitrary functionality can be in- 
serted into the implementation of system condition objects such as control of mechanisms exter- 
nal to the QuO kernel or internal logic required to compute the value which the system condition 
object represents. This functionality can execute asynchronously to the QuO runtime and con- 
tracts or it can be triggered by contract transitions. 

Each system condition object is implemented as a Java class which implements a simple Java 
interface common to all system condition objects. This interface must provide a getValue() 
method used by contract objects to query system condition objects for their values and a get- 
<type>() method for any type relevant for the system condition object. Some simple system 
condition objects, e.g., those that are internal to a contract, are completely specified if they im- 
plement the getValueO method. All other system condition objects must be CORBA objects and 
as such must inherit from an existing hierarchy of system condition CORBA objects. This re- 
quirement makes it possible for the delegate to instantiate the system condition objects (using the 
QuO kernel's factory). 

Since system condition objects can publish their IDL interface, they can provide control and 
access to their values outside the QuO runtime, effectively allowing system condition objects to 
function as interfaces between QuO and system resources, mechanisms, managers, etc. external 
to QuO. Each system condition object may also run any number of threads exclusive to either 
each instance or each class. The freedom to implement system condition values with asynchro- 
nous control does not interfere with the general control flow within the kernel and facilitates the 
implementation of certain kinds of objects such as timers or resource pollers. A growing library 
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of system condition classes that comes with each QuO release and that can be composed or in- 
herited from also facilitates the implementation of new system condition objects. 

The following examples give a sense of the expected granularity of system condition objects. 
Of the five system condition classes that follow, the first four are part of the standard system 
condition library and the fifth can be trivially implemented in terms of the first. 

• ValueSysCond is a simple system condition object representing a value holder. Its get- 
Value() implementation simply returns its state, and its state is set (and read) externally by 
the methods writeVal() and readVal() defined in the class' IDL interface and implemented 
as one would implement the methods of any CORB A object. 

• MethodlnvocationTimerSysCond is a more complicated system condition object im- 
plemented in terms of ProbeSysCond and TimerSysCond. The ProbeSysCond class pro- 
vides the object with signals that indicate when a method invocation has begun and when 
it is about to end. The TimerSysCond class provides a generic implementation of a timer. 

• RemoteSystemLoadSysCond gets its value by periodically polling a remote host for its 
load statistics. 

• RSVP_SysCond has a getValue() method that simply reports the current status of a par- 
ticular RSVP connection. However, embedded in the implementation of this system con- 
dition object are the control mechanisms required to build up and tear down the RSVP 
connection whose status it is reporting. 

• RemoteObjectStateNoticeSysCond reports when the state of a remote object last 
changed. Rather than implement this by polling, the remote object can signal this system 
condition object when its state changes. 

4.5.    Instrumentation library 
The QuO toolkit supports making in-band timing measurements of each CORB A call. For 

each call, a trace-record is generated which records the amount of time the CORB A call spent in 
the network, the object server, and QuO delegates. In addition, the trace-record records the size 
of the input and output parameters. The trace-records are given to a statistical reduction object 
which uses the per-call measurements to calculate real-time statistics, such as Average Call La- 
tency, Network Capacity, Object Capacity and QuO latency overhead. The real-time statistics are 
passed to QuO system condition objects and can be used to define regions of a QuO Contract. 

QuO instrumentation is featured in the QuO examples found in examples/bottleneck 
and dirm/ examples /bottleneck in the QuO release software. These examples demon- 
strate how to use the instrumentation to detect a performance bottleneck in real time. 

4.5.1. Components of QuO Instrumentation 
The in-band instrumentation is extremely flexible and depends heavily on QuO SDL to place 

the probes. QuO instrumentation consists of the following components: 

• Standardinstrumentation: a Java object that contains the methods that are to probe the 
QuO delegate into a trace-record, collect real-time statistics, and convert the statistics to a 
signal to be sent to system condition objects. An instance of a Standardinst rumen- 
tat ion object is attached to each delegate. The QuO V2.1 Javadoc documents the 
Standardinstrumentation methods. 
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• RunLine: a simple Java object that does linear regression on a time series. The QuO V2.1 
Javadoc documents the RunLine methods. 

• PropertyProbe system condition object: this system condition object receives the real- 
time statistics from the Standardinstrumentation object in the Delegate. The signal is used 
to transfer the information each time the delegate requests the contract to be evaluated 
(twice per call). 

• Modified Functional IDL: used to create a channel to move the trace-record from the cli- 
ent-side delegate to the server-side delegate. The modification is to add an extra parameter 
to each method signature, which the client-side adds and the server-side strips off. 

• Server-Side Delegate: used to collect measurements on the server-side and return the 
trace-record back to the client-side. The server-side delegate is actually a CORBA object 
with an IDL that includes the extra parameters. 

QuO SDL is used to place the Standardinstrumentation probes in the generated 
delegate code. 

4.6.    Pluggable gateway 
In order to provide the type of controllable, predictable, and manageable environment we seek 

with QuO, we need mechanisms to control and enforce resource management and synchroniza- 
tion for the networked entities. An important factor behind the rising level of interest in QoS is 
the increased embedded use of still largely unmanaged network communication services. The 
inherent variability in using these services, due to changes in resource configuration, load, rela- 
tive location and current availability (operational status), make the end to end results delivered to 
the application highly unpredictable. This has led to the development of a variety of mechanisms 
and approaches for better manageability. However, these mechanisms are usually at a fairly low 
level in the protocol stack or closely tied to the transmission mechanisms where they can better 
control behavior. That makes them difficult to incorporate into the software engineering para- 
digms close to the application programmer's level of abstraction. One possible approach is to de- 
velop an enhanced specialized ORB with just the right properties. A better alternative, which we 
are seeking, would work with a variety of off-the-shelf ORB products, both commercial and ex- 
perimental. 

Our solution, and the one adopted for QuO, is to combine control elements at the object inter- 
face level with control elements at the transport level in a translucent manner. That is, to link the 
desired behavior at the client/object interfaces with the appropriate behavior at the communica- 
tion interfaces, in a manner which makes the connection between the two visible and controllable 
(versus transparent). An important component supporting the integrated property QuO architec- 
ture is the QuO object gateway. An object gateway is the QoS aware element inserted at the 
transport layer between clients and objects to provide the managed communication behavior for 
the particular QoS property being supported. In the QuO architecture, it is the job of the QuO 
object gateway superimposed at the transport level to apply the appropriate mechanisms needed 
to fulfill the obligations incurred at the QuO contract level. Figure 4 illustrates the QuO Object 
Gateway. 

Since it is highly desirable that the QuO system be useable with a variety of ORB products, 
and the ORB is generally responsible for establishing communication with the designated object, 
our immediate goal becomes inserting the proper mechanism after ORB processing, but before 
handing the request off to the network transport subsystem. In CORBA, the open protocols be- 
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tween ORBs needed to support ORB interoperability (Interoperable Internet Operation Protocol, 
or HOP) also allows the seamless insertion of a QuO gateway function to provide the appropriate 
transport level conditioning needed to meet the high level QoS contract. 

4.6.1. Functions of the Object Gateway 
The primary function of the QuO Gateway is to allow the easy and convenient insertion of 

QoS aware transport layer protocols between distributed clients and servers. By transport layer 
protocols we include not only traditional protocols (e.g., TCP/IP) for moving data but also spe- 
cialized protocols to support specific QoS enhanced data transport mechanisms providing spe- 
cific attributes in the areas of real time performance, dependability and security. These special- 
ized protocols contribute various enhanced properties to the transport of message data, ranging 
from reserving bandwidth capacity to ensure high priority, real time message data traverses the 
network unimpeded by further delay from other competing traffic, to organized group (multicast) 
transport distribution to ensure synchronized parallel, redundant transformation updates, to con- 
trolling which messages can or cant get through and with or without proper encoding to support 
overall security objectives. 

In its CORB A instantiation, the QuO Gateway piggybacks on the existing HOP invoca- 
tion/response transport mechanisms, inserting additional protocols that manage QoS properties 
as noted above. In effect, the QuO Gateway serves to manage enhanced HOP transport interac- 
tions between CORB A clients and objects. While transport level QoS is not equivalent to end-to- 
end QoS, it does nonetheless address a significant, and perhaps most critical, part of the end-to- 
end problem. Another step in QoS management is to link the transport level resource manage- 
ment provided by the QuO gateway with other parts of the QuO framework to produce the de- 
sired managed, adaptive and integrated behavior. 

The functions of the QuO gateway fall into two distinct categories: (1) those that are needed 
for the general QuO gateway support independent of the property being managed and (2) those 
that are specific to the various QoS property protocol mechanisms being inserted into the general 
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gateway structure. In the rest of this subsection we enumerate the general gateway functions 
supported. 

The standard functions of the object gateway include the following: 

• (Approximate) transparent insertion in the HOP stream of QuO specific management 
functions (capable of calling appropriate property specific protocols) on both the client 
and server sides if needed. This involves inserting in the HOP stream matching gateway 
halves providing a shadow QoS transport server on the client end, and a shadow QoS 
transport client on the server end. In this way, to the client the QuO gateway looks like an 
endpoint CORBA server, while to the server, the other half of the QuO gateway looks like 
an initiating CORBA client. The job of the gateway is to transport the request/reply to its 
appropriate destinations utilizing the appropriate path selection and mix of QoS mecha- 
nisms. 

• Request/Reply matching needed to coordinate the two asynchronous activities 
• Error handling, including system exceptions acting on behalf of the ORB, as well as other 

CORBA based redirection functionality such as "Cancel" and "Locate". 
• Standard interfaces for inserting and substituting a wide range of specialized transport 

level QoS mechanisms and transport level QoS handlers in support of these mechanisms. 

4.6.2. Architecture, Design, and Implementation of the Object Gateway 
The gateway shell provides basic gateway capabilities, based on monitoring HOP requests. 

The gateway inserts itself into the inter-ORB communications stream by terminating the HOP 
session at the client side and initiating a new one at the remote site. In between, it applies appro- 
priate QoS measures depending on the current contract region and available mechanisms and re- 
sources. This gateway shell is suitable for use as the base for constructing specialized QoS- 
property object gateways. 

A specific property object gateway is built by layering the gateway shell on top of underlying 
QoS implementation mechanisms. For example, we layer the QuO object gateway over QoSME 
to produce a RSVP gateway. The gateway translates from HOP to specific requests on the un- 
derlying RSVP mechanisms. Similarly, we layer the gateway over Ensemble group communica- 
tion to provide synchronized message traffic among collections of replicated objects. The gate- 
way translates from the single object invocation to the underlying group communication trans- 
port paradigm. Figure 5 illustrates the general architecture of the QuO object gateway shell, in- 
cluding the interaction of its two gateway halves. 

To the client ORB, the QuO gateway looks like the object. To the server ORB, the QuO 
gateway looks like a client. The ends of the gateway are at minimum on the same LAN as the 
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client/object, and may be on the same host. In certain configurations, there may be many gate- 
way instances on a LAN, and even many gateways on a host. CORBA objects are used to control 
QuO gateway halves by allowing the gateway to be configured remotely, but do not interfere 
with in-band communication. 

DII and DSI are standard CORBA interfaces provided to support dynamic invocation seman- 
tics, where the nature of the parameters of the invocation/reply is not known until runtime. We 
use them to insert our QuO gateway proxies as object request relays, utilizing the CORBA stan- 
dard GIOP messages underlying the HOP implementation. HOP glue multiplexes and demulti- 
plexes GIOP messages to the gateway coordinator. The Gateway Coordination module handles 
flow control and error detection, as well as path selection. 

Figures 6 and 7 show the symmetry in the gateway shell halves representing the client side 
gateway and the server side gateway. Transport interactions between these halves are governed 
by the appropriate mechanism for the specific QoS property being managed by the gateway 
within the QuO infrastructure. 

The client-side interface produces a partially parsed GIOP request to be transported that is 
bundled into a call block and puts it on the request queue for the specialized transport. The call 
block is used for sequencing the transport activities and for matching with an eventual reply. In 
our current design, there is a separate thread per HOP transaction, with the suspended processing 
thread maintained in the call block. 

The server-side interface essentially does the inverse of the client-side, starting from the 
transported GIOP request. The DII interface sends a request structure to the object reference. The 
return values are bundled into the call block and put on the reply queue for the specialized trans- 
port. Reply messages are forwarded with very little change and are largely opaque to the gate- 
way. 
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Figure 7: Server side gateway shell 
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If the transported call encounters an error, an exception is thrown in the reply code. These ex- 
ceptions are classified as System_Exceptions, because the gateway is logically an extension of 
the ORB. Special threading restrictions are needed to maintain the order of arrival of requests, 
which are important to some QoS mechanisms. 

5. Survivability using the QuO Toolkit 
Using the QuO toolkit, described in Section 4, we support the following system level behav- 

iors to improve the survivability of applications: 

• The development of intrusion- and security-aware applications. These applications can aid 
IDSs and security managers, by recognizing application-level patterns of usage that might 
indicate intrusions or security breaches. QuO instrumentation (Section 4.5) and system 
condition objects (Section 4.4) measure the level of service provided. These can also 
gather information useful to IDSs and security systems, both for recognizing intrusions 
and for gathering information about their causes and sources. 

• The development ofsurvivable applications. These applications can adapt to changing 
conditions in their environment, including reported intrusions and changes in security 
policies. This enables them to avoid potential intrusions, continue in the face of degraded 
service, and recover from intrusions and faults. 

• Integration and interfacing of multiple IDSs at the application level. While many IDSs are 
good at detecting certain types of intrusions, a 1998 DARPA ISO evaluation showed that 
multiple IDSs cover a larger space of potential intrusions [Dyn98]. However, most IDSs 
are not designed to work in conjunction with others. An application built within the QuO 
framework can interface to multiple mechanisms and managers, including multiple IDSs. 
QuO's system condition objects (Section 4.4) provide a common interface to mechanisms 
and managers that have proprietary interfaces. In this manner, QuO applications can ac- 
cess information from multiple IDSs that detect different types of intrusions. Let us em- 
phasize that the idea of interfacing uniformly with multiple IDSs at the application level is 
not to come up with a better IDS, rather to increase the security coverage to the applica- 
tion. This is complementary to the Common Intrusion Detection Framework (CIDF) effort 
[Sta98], which is developing a framework for IDS-to-IDS communication with an aim to 
perfect the art of intrusion detection. CIDF does not provide any support for application- 
IDS cooperation. 

• Integration of IDSs and other resource managers. IDSs and other managers, such as secu- 
rity policy managers or dependability managers, perform complementary activities and 
could cooperate to provide higher levels of service. For example, a security policy man- 
ager could use intrusion detection information provided by an IDS to dynamically deter- 
mine whether to move to a stricter level of access control. Likewise, an IDS could use in- 
formation from a fault detection or dependability manager to determine where and what 
type of intrusions to look for. QuO provides support for building applications that can in- 
tegrate interactions with managers for many different complementary dimensions (e.g., 
security, intrusion detection, and dependability) to achieve higher levels of service and 
adaptability. 
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QuO supports the addition of security awareness and control at the middleware level, i.e., at 
the interface between applications and the lower level security and resource management mecha- 
nisms. We concentrate on middleware capabilities for the following reasons: 

• Survivability mechanisms at the middleware layer can be more effective at application 
survivability because of their closer proximity to application information. OS and network 
level resources and mechanisms can be crude with regard to detecting whether an attacker 
has corrupted an application (e.g., recognizing whether processes have failed or whether 
an application is requesting resources). In contrast, survivability mechanisms in middle- 
ware can better detect certain attacks on applications, e.g., detecting whether an applica- 
tion has violated any of its constraints, and use OS and network level resources and 
mechanisms in an application-specific way to combat them. 

• Mechanisms at the middleware layer can be uniform across heterogeneous operating sys- 
tems and networks. The application can use the same approaches to security and adapta- 
tion on NT as on Unix, and can continue using them even if migrated from one kind of 
host to another. Furthermore, uniform policies and response strategies can be applied 
across the pieces of heterogeneous distributed applications. 

• Security mechanisms in current operating systems and networks are far from perfect. This 
is partially the result of the increasing use of COTS software, not designed with security 
in mind, and partially the result of the limited scope and knowledge of the application 
available at the network and OS levels. So the survivability of host systems needs to be 
enhanced, and a natural place to do that is in the middleware that ties the host systems to- 
gether. We use QuO to enhance the survivability of applications and host systems, work- 
ing in conjunction with security mechanisms at lower levels. If security in the operating 
systems that host QuO can be circumvented, then QuO's adaptability is also in danger of 
compromise on those hosts. 

In the following sections, we discuss in more detail two aspects of middleware enabled sur- 
vivability: survival by adaptation and survival by protection. The survivable example applica- 
tions developed under the Open Implementation Toolkit project concentrate on survival by ad- 
aptation, but laid the groundwork for pursuing and demonstrating survival by protection under 
other projects. 

5.1.    Survival By Adaptation 
Faced with changing environmental or operating conditions, an application may: 

• do nothing, 
• try to isolate itself from the changes, 
• try to anticipate the possible changes and include code to handle each possibility, or 
• employ general purpose mechanisms to adapt to changes. 

Obviously, the first option can lead to application failure when changes (malicious or other- 
wise) occur. Regardless, the first option and ad hoc attempts to encode the second and third op- 
tions are the most common approaches in use today. A more systematic, software engineering 
approach to the fourth option, which encompasses useful subsets of the second and third ap- 
proaches, is the underlying theme of our approach. 
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5.1.1. Adaptation 
Let us start with several adaptive strategies that could help an application survive. Consider a 

simplified application where the client requests images from an image server. For this applica- 
tion, assume that receipt of images in a timely fashion is more important than whether the image 
is large or small, processed or unprocessed. In other words, timeliness (when the image arrives) 
is more important than the precision (size of the image) or accuracy (quality of the image) of the 
image. Without any adaptive behavior, the application may cease to be useful (or even crash) if 
the network or the server slows down. However, with adaptivity we can craft the following sur- 
vivability scenarios: 

• If a denial of service (DOS) attack on the server causes its CPU to overload, thereby 
slowing image delivery, the image server starts sending unprocessed images. This saves 
the CPU time that would have been used to process the images and sacrifices data quality 
for performance. 

• If a DOS attack floods the network with traffic, the image server starts sending smaller 
images to save on the network overhead associated with larger data sets, thereby trading 
off quantity of data for performance. 

Note the important role played by monitoring the environment. In order to take a meaningful 
adaptive step towards survivability, the application needs to know whether the problem was in 
the network or at the server host (because the remedy will be different). Also note that without 
the adaptive response, merely knowing the existence or the source of the problem does not en- 
sure the application's survivability. It is easy and straightforward under the QuO framework to 
formulate the operating regions and the adaptive behaviors of such an application and imple- 
ment the contracts and the delegates and insert the monitoring mechanisms in the application 
using the QuO toolkit. The Bottleneck example that is included in the QuO software illustrates 
this. 

Two comments about such an example are in order. First, it demonstrates the QuO toolkit as 
an enabling technology toward the feasible development of applications that can more easily 
adapt to their environment. Second, it shows that this kind of adaptation can be effectively ap- 
plied to ensuring the survival of applications as defined earlier, i.e., to avoid potential intrusions, 
continue in the face of degraded service, and recover from intrusions and faults. 

5.1.2. Redundancy 
Systems with redundancy offer the possibility of increased survival. Redundant hardware is 

usually the primary route taken to ensure survivability of physical systems. The same is true in 
the context of software systems as well. An application can utilize redundant sites (with reserved 
bandwidth on each path) for the same service so that if problems make one path unusable it can 
still use the service via the other. It may employ redundant servers so that if one crashes the oth- 
ers would still service client requests. If off-line reconfiguration and restart is not a useful pri- 
mary option, then effective use of redundancy involves elements of (online) monitoring and ad- 
aptation. For instance, the middleware needs to know about a server crash so that it could dis- 
patch the next request to an alternate server. Traditionally, this is either done by the application 
code (e.g., time out and then redirect to the alternate server) or by some kind of redundancy 
management system, which is often coupled with a specific resource. 
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Using QuO adaptive behavior descriptions it is easy to redirect invocations to an alternate 
server. Using QuO's integration with property managers, we can support an even more sophisti- 
cated kind of redundancy. For instance, to survive crash failures we can use the Proteus depend- 
ability manager [Cuk98, Sab99] which supports various replication strategies including active 
replication, where it manages multiple replicas of an object. Without any kind of adaptation, 
merely by asking Proteus to maintain two replicas on two hosts, we can ensure that the applica- 
tion will survive the crash of one replica or one of the hosts, and Proteus will try to start another 
replica when such a crash happens. With QuO, we can define an even more sophisticated adap- 
tive strategy for survivability: we can define contract regions that signify whether or not the de- 
pendability mechanism can sustain the desired number of replicas. Then when the application 
senses that the dependability mechanism cannot sustain the desired number of replicas, it may 
withhold operations that are known to cause problems at the server (for instance, new methods 
that may not be fully tested and debugged as yet) or suppress all low priority invocations. Simi- 
larly, using QuO and the RSVP bandwidth management mechanism [BBN98], instead of re- 
serving bandwidth a-priori, a QuO application can reserve a channel as part of its adaptive re- 
sponse when it senses that available bandwidth is less than what is expected (which will result in 
less bandwidth for other, less critical, applications). 

5.1.3. Monitoring 
In the preceding two sections we have stressed the integral role played by monitoring in sur- 

vival by adaptation. Monitoring is important because it provides the awareness of the surround- 
ing environment and the events that are taking place in the environment, which is a prerequisite 
for intelligent adaptive decision making. In addition to measuring systems resources such as the 
available bandwidth, CPU load or number of sustainable replicas, monitoring may include inter- 
facing with devices and mechanisms such as firewalls and intrusion detection systems. With so- 
phisticated monitoring it is possible to construct advanced survivability scenarios such as the one 
described below. 

Imagine an application using replicated objects for survivability. It has requested enough rep- 
lication to tolerate 2 crash failures and accordingly the Proteus dependability manager is main- 
taining 3 replicas on 3 different hosts. Although Proteus is able to successfully maintain the de- 
sired level of replication, replicas on one of the hosts are crashing frequently. A QuO system 
condition object can recognize the patterns of failures on that host and as a result, the application 
(as part of its adaptive response) can request an intrusion detection system to monitor the host 
more carefully. This activity may detect an act of intrusion and with this information from the 
monitoring mechanism, the application can further adapt by asking the Proteus dependability 
manager not to place replicas on that host. 

5.1.4. Diversity 
Diversity has a natural appeal for survivability. In the context of survivable applications di- 

versity can exist at various levels, e.g., different hardware and operating system platforms, dif- 
ferent algorithms and implementations, and different intrusion detection mechanisms. By defini- 
tion, diversity entails some form of redundancy as well Sometimes diversity provides better 
coverage or improves accuracy. For example, by combining one intrusion detection system that 
focuses on the network interface with another intrusion detection system that focuses on the file 
system one can detect more kinds of intrusion attacks (better coverage). For those attacks that 
affect or involve both network and file system resources, such a combination may also reduce 
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false alarms (improve accuracy). For other cases diversity provides a resistance that homogeneity 
cannot provide: the vulnerability of one operating system may partially be compensated by using 
two operating systems since the risks are reduced that the same attack will bring down both of 
them. Using diversity, applications can employ sophisticated survivability scenarios as described 
below. 

Continuing with the applications that use replicated objects, let us consider that the depend- 
ability manager can manage replicas on two different operating systems, NT and Linux. Imagine 
that the monitoring mechanisms indicate that an NT attack is in progress. As part of its adaptive 
response the application can ask the dependability manager to remove all replicas from NT hosts 
and instead use those hosted on Linux boxes (Having replicas on multiple operating systems may 
be slightly more complex if the implementation of the replicated object is not portable.). Fur- 
thermore, when the monitoring mechanism senses that replicas are crashing more frequently on a 
host, it may employ more than one IDS to watch over the host: one monitoring the file system 
integrity and the other monitoring network activities. 

5.2.    Survival By Protection 
The first line of security defense for any application under the QuO framework is access con- 

trol The application designer needs to ensure that only authorized users and programs may in- 
voke the application and that no tampering with the application's internal mechanisms is possi- 
ble. QuO integrates access control mechanism technology, in the form of Network Associates' 
OO-DTE (Object Oriented Domain Type Enforcement), to satisfy these needs. We assume that 
the environment in which QuO runs, including the host operating systems and networks, has 
built-in security mechanisms. Without such protection, QuO's security mechanisms can be easily 
disabled. We do not assume, however, that the environment offers uncircumventable security. 

5.2.1. Object Oriented Domain Type Enforcement (00 DTE) 
OO-DTE [Ste99] is an object-oriented, policy-driven mechanism for fine-grained access con- 

trol in distributed systems. It is policy-driven because it bases access control decisions on a sin- 
gle, explicit, written policy governing an entire distributed application. The application developer 
describes the access controls once, and OO-DTE enforces these controls consistently at all loca- 
tions where the application runs. This approach eliminates the need for a developer to set oper- 
ating system access controls manually on every host. 

OO-DTE is object-oriented because it controls access in terms of objects and the clients that 
use them. It works at the middleware level, above the level of host access controls on resources, 
which are represented to the designer as abstract objects. OO-DTE access control is fine-grained 
because it allows control over access to each object and each object method individually. The 
protection it offers is therefore more flexible than that offered by firewalls, for example. OO- 
DTE policies are written in a language called DTEL++ that defines a set of access rights for the 
application. DTEL++ relates these access rights to elements of CORBA. Objects are assigned 
rights to access methods declared in CORBA IDL or rights to access objects by name, using the 
CORBA Naming Service. QuO application developers use OO-DTE through DTEL++. 

5.2.2. Using OO-DTE as a Security Mechanism in QuO 
QuO application developers can use the OO-DTE mechanisms directly for protection. The 

developer writes a DTEL++ policy to describe access rights, controlling both the access of users 
to the application and access of application components to each other. The DTEL++ policy refers 
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to methods declared in CORB AIDL, and in this way, it is like QuO's other specification lan- 
guages. The DTEL++ policy must cover all of the interfaces used in the application, including 
those used by QuO callbacks and by alternate behavior specifications. 

The OO-DTE access control code is currently inserted into a QuO application using CORB A 
interceptors in each ORB. Thus, when a client invokes a method on an object, the OO-DTE ac- 
cess rights are checked by an ORB interceptor after the QuO client's delegate has processed the 
invocation. This fact about sequencing can be important when the delegate makes a callback or 
doesnt pass the invocation through directly when implementing adaptive behavior: the access 
rights for the original invocation are checked when the invocation is passed through the delegate 
to be handled by the ORB. 

The application developer must also define a set of cryptographic certificates needed by the 
application. OO-DTE does not assume that an application's components are all trusted to the 
same degree. Instead, each client and object must authenticate each other using cryptographic 
means (e.g., SSL [Net]). 

5.2.3. Protecting the QuO Infrastructure 
Just as application clients use CORB A to invoke methods on application objects, so QuO 

delegates use CORB A to invoke methods for accessing system condition objects, for initializing 
contracts, and for causing the kernel to evaluate contracts. The QuO infrastructure is therefore 
subject to the same kinds of attack as is the application. For example, a malicious program could 
try to trigger QuO's adaptation mechanisms at the wrong time by changing the value of a system 
condition, or to disable QuO altogether by changing QoS contracts. 

We protect the QuO infrastructure using OO-DTE access control just as for applications. The 
QuO infrastructure code must use ORBs with OO-DTE interceptors (in fact, if this were not so, 
OO-DTE would not work because the infrastructure and the delegates could not establish mutual 
authentication) and the DTEL++ policy must describe access control for infrastructure methods 
also. The policy must prohibit delegates from damaging the infrastructure but still give them the 
access they need for adaptation. 

The need to protect the QuO infrastructure has implications for the design of QuO. We as- 
sume that threats to QuO come from application software and not from code within the QuO in- 
frastructure we supply. Then the QuO design must not allow application software to run in the 
same process address space as the QuO infrastructure. OO-DTE cannot protect QuO from mali- 
cious code in the same address space because that code may bypass CORBA altogether and di- 
rectly access QuO code and data structures. The infrastructure we supply with the QuO distribu- 
tion is therefore defined to be part of the trusted computing base (TCB) [DoD85] and all exten- 
sions to that infrastructure and applications must run in other address spaces. For example, the 
QuO kernel cannot be run securely in the same process as an application client, even though do- 
ing so is one way to obtain enhanced performance. These sorts of property tradeoffs are funda- 
mental issues in distributed computing technology. 

5.3.    Building Survivable Applications Using the QuO Toolkit 
In this section, we describe two of the demonstration applications we have developed to test 

and evaluate the flexibility and utility of the QuO toolkit in supporting more survivable, adaptive 
applications. 
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Figure 8: The survivable inventory application 
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5.3.1. Example Application Integrating IDSs with QuO Adaptivity 
In this section, we describe an application demonstrating how a commercial IDS, a simple 

custom developed IDS, and application-specified intrusion detection are all integrated to provide 
intrusion awareness and adaptive behavior in response to intrusion detection at the application 
level. This application is fairly simple, but illustrates a number of important capabilities, includ- 
ing the following: 

• Integration of commercial and non-commercial IDSs using the QuO framework. 
• An application seamlessly interfacing to multiple IDSs, enabling the IDSs to cooperate 

through the application layer and increasing intrusion coverage. 
• An application participating in the intrusion detection process, by recognizing conditions 

that can indicate intrusions but that are not detected by the IDSs. 
• An application adapting to survive potential intrusions, triggered by outputs of the IDSs. 

In contrast, the application can use the IDSs as mechanisms to turn on, turn off, or change the 
level of intrusion detection provided based upon its operating mode and security needs. 
5.3.1.1 Overview of the Experimental  Survivable Application 

This experimental application implements an inventory application with a fixed set of inven- 
tory items, as illustrated in Figure 8. Inventory data is stored as files in a designated data direc- 
tory. Two servers manage the inventory: one more secure than the other. The client program, 
representing the inventory control system, provides a user interface through which users can 
identify themselves (i.e., log in), add or consume items in the inventory, and log out. Both serv- 
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ers can respond to requests from the clients, but the more secure one authenticates (using a sim- 
ple authentication scheme) each request and grants access only to certain clients. 

This is an example of the alternative behaviors that the QuO middleware is intended to medi- 
ate. In normal mode, all client requests are serviced by the non-authenticating (and therefore 
faster) server. As conditions indicate that intrusions are more likely, the inventory control system 
adapts to use the authenticating server and then, eventually, may cut off all access to non-privi- 
leged users. The client and server programs are simple CORB A objects. No intrusion detection 
or adaptation is programmed into them. For this example, all adaptation is built into the QuO 
middleware layer. We utilize three intrusion detection instruments in this example: 

• Tripwire, a commercial file system integrity checker [Kim94]; 
• FileCounter, a simple, custom developed directory access checker; and 
• Specifications, encoded into the QuO contract regions, indicating the expected round trip 

response time range and recognizing when client requests are being abnormally delayed 
(possibly because they are being intercepted, or because of host or network attacks). Note 
that such a delay, by itself, is not sufficient indication of an intrusion: benign network 
congestion could cause a false positive. This merely serves as an example of an indicator 
of potential problems for an intrusion aware application. 

We use Tripwire to monitor the file system that stores the source and executable code of this 
application and FileCounter to monitor the data directory. We use system condition objects to 
interface to Tripwire and FileCounter, each of which normally provides its own custom interface. 
These system condition objects project values from the IDSs to the QuO layer and provide com- 
mon access to the control interfaces provided by the IDSs. Tripwire's system condition object 
(called IDS Value) projects a value to the QuO contract indicating whether the integrity of the 
code store has been violated (in Tripwire's view). Similarly, FileCounter's system condition ob- 
ject (called FileAddedOrDeleted) projects a value indicating to the QuO contract indicating 
whether a data file has been lost or added. 

Deviation from normal operating behavior often points toward potential problems. For in- 
stance, if a server returns a value that does not make any sense in the current context, the client 
may become suspicious that the server has been compromised. Similarly, if it takes an abnormal 
amount of time to fulfill a request to the inventory server, the client may become suspicious that 
there is a problem in the network, a host, or in the server. It is straightforward to encode such 
normal operating ranges in QuO's contract regions and to specify adaptive behavior to trigger 
when the application falls outside normal ranges. In this example, we use the contract and a sim- 
ple system condition object (called TimeTaken) to measure the average round trip time of 
method calls and watch whether it falls outside of the expected range. As we stated earlier, there 
may be a variety of causes of this abnormal behavior, only some of which are the result of intru- 
sions. Determining the actual cause falls somewhere between system troubleshooting and intru- 
sion detection. 
5.3.1.2 Basic Integration Architecture 

The example application includes the three system condition objects described above: 
IDSValue, FileAddedOrDeleted, and TimeTaken. IDSValue, illustrated in Figure 9, provides the 
QuO interface to Tripwire. Tripwire can be initialized to monitor specific sections of a file 
system for particular attributes, such as permissions or modification times, of the files and di- 
rectories in that section. Tripwire computes a database upon initialization. At runtime, it recom- 
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Figure 9: A system condition object interface to a COTS IDS 

putes the database, compares the newly computed database against the initial one, and presents a 
result set that indicates what occurred in the file system section between the runs. 

We wrap Tripwire with a CORBA object interface that runs Tripwire periodically and ana- 
lyzes its output. If there is any change in the file system section this CORBA object returns a 
value 1, otherwise it projects a value 0. The IDSValue system condition object is hooked to this 
CORBA object. One of its threads polls Tripwire's CORBA wrapper to get the latest value. The 
other thread responds to requests from QuO contracts for the latest value. Similarly, FileCoun- 
ter's system condition object, FileAddedOrDeleted, projects a value indicating to the QuO con- 
tract indicating whether a data file has been lost or added. 

Of course, if the IDS system were a CORBA object already, then no CORBA wrapper is nec- 
essary. The other IDS component is a CORBA object that monitors files in a directory. File- 
Counter produces a value 1 if a file is added or deleted in that directory, 0 otherwise. We have 
used this as a simple custom developed IDS and integrated it with QuO along with Tripwire, in 
order to experiment with multiple IDS inputs. 

The QuO contract used in this example defines the following operating regions, each defined 
in terms of the system condition objects described above: 

• NORMAL : (TimeTaken < 500 ms) and (IDSValue = 0) and (FileAddedOrDeleted = 0) 
• TIME SUSPECT: (TimeTaken >= 500 ms) and (IDSValueSC = 0) and 

(FileAddedOrDeleted = 0) 
• ACCESS SUSPECT : (IDSValueSC = 1) xor (FileAddedOrDeleted = 1) 
• INTRUSION LIKELY : (IDSValueSC = 1) and (FileAddedOrDeleted = 1) 

When a client is activated, it obtains a QuO delegate instead of a CORBA stub. All remote in- 
vocations initiated by the client are passed through the delegate. The delegate has associated with 
it the mechanism to determine the current contract region. Depending on the current region, the 
delegate makes different dispatching decisions about the remote invocation, which leads to the 
application's adaptive behavior. In this demonstration, the delegate is programmed to cause the 
following adaptive behavior based on the current contract region: 

• NORMAL region: client requests are forwarded to the non-authenticating server. 
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Figure 10: Runtime behavior of survivable inventory application 

• TIME SUSPECT region: A warning message is displayed to the user notifying of the un- 
usual delay and urging caution in using the inventory system. The client's requests are still 
forwarded to the non-authenticating server. 

• ACCESS SUSPECT region: A warning message is displayed to the user stating that a po- 
tential access violation is detected and that requests may or may not be granted. Clients' 
requests are now forwarded to the authenticating server, which grants access only to 
privileged users. 

• INTRUSION LIKELY region: A warning message is displayed stating that it is highly 
likely that there was an intrusion that could have compromised the code and data store of 
the application, and all client requests are returned without making any remote call. This 
implies that only some inventory operations (ie. that could be handled locally, for exam- 
ple a query about an inventory item could be answered, with some degree of accuracy, 
based on the value last seen) are available at this region. One can extend the range of 
available operations by using various technologies such as object caching or maintaining a 
local replica of the inventory server. 

In addition, if at any time the return value is negative (under normal circumstances, the server 
should never return a negative value) that value is reported to the user and the contract region is 
switched to ACCESS SUSPECT. All of these adaptive behaviors are specified in QuO's specifi- 
cation languages. Figure 10 presents a pictorial representation of the full IDS aware inventory 
application after the QuO-IDS integration. 
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5.4.    Using Dependability for Survival 
There are numerous tools and mechanisms, which we generically refer to as property manag- 

ers, that manage low level system resources. These property managers provide the capabilities 
that QuO applications must measure and control in order to achieve and adapt to levels of service 
in the system. For example, we have developed a bandwidth management system that uses RSVP 
to reserve network bandwidth, providing improved network response for the application 
[BBN98]. Similarly, we have built an availability example around the Proteus dependability 
management system [Cuk98], which uses group communication, replication, and fault recovery 
to provide higher levels of availability to the application. These integrated property managers can 
be used to develop adaptable, survivable applications in the following ways: 

• They can provide information indicating anomalous behavior and its causes. In general, 
more precise information means improved adaptive response. For example, unusual delay 
(which we have used as an indicator of a potential problem) could be caused by the net- 
work, by a compromised object, a crashed object, a compromised host or a crashed host. 
Given additional information, the application can adapt intelligently. 

• They can provide the application more adaptation opportunities. For example, if it is the 
network that is the source of an abnormal delay, the QuO application can attempt to re- 
serve bandwidth, if such a manager is available. 

Dependability is one such property. Under this project, we enhanced the capabilities of the 
Proteus dependability manager [Sab99] and integrated it into an example in order to illustrate 
how other property managers working in concert with IDSs and adaptable applications can pro- 
duce more flexible, survivable applications. 

The QuO-IDS integration example as described in the previous section, although survivable in 
the face of some types of intrusions, is hardly dependable. If one of the server objects dies, the 
whole application dies. Using the Proteus dependability manager, it is possible to make the ap- 
plication more dependable in the sense that it can tolerate a certain number and type of faults. 
Proteus achieves that by replicating the server objects on multiple hosts. However, in the course 
of its fault recovery, Proteus usually hides faults from the application. That is, when an object 
crashes, Proteus restarts it and updates its state, to maintain a level of dependability transparent 
to the application. In the context of a survivable, intrusion-aware application, fault masking may 
hide potential clues for intrusion. 

In conjunction with our research, the University of Illinois has developed a fault notification 
interface for Proteus. Using this interface we have developed a CORBA object, called FaultOb- 
server, that receives notification from Proteus about faults such as the unsuccessful start of a 
replica, crash of a replica, and crash of a host. Each notification consists of a set of fault infor- 
mation that can be stored and analyzed to recognize patterns of failures that might indicate an 
intrusion. The following are two example conditions that FaultObserver currently recognizes: 

• POTENTIAL INTRUSION OF HOST x: this indicates that either the host named x 
crashed or replica start attempts on this host were unsuccessful. 

• POTENTIAL COMPROMISE OF OBJECT o: this indicates that either a replica of object 
o has crashed or attempts to start a replica of object o have been unsuccessful. 
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Figure 11 shows three system condition objects that we have hooked up to the FaultObserver 
object. Each of the top two projects the value of the POTENTIAL INTRUSION conditions for 
one of the two replication hosts and the bottom one projects the value of the POTENTIAL 
COMPROMISE condition for a server object. 

Let us consider a simple client-server application that uses Proteus to replicate the server and 
in addition, also maintains a non-replicated server. Replication provides the fault tolerance and 
dependability, whereas the non-replicated server makes it possible for the application to bypass 
the replication mechanism if it chooses to. A contract for this application may include the fol- 
lowing regions predicated on the system condition objects described above: 

• HOST SUSPECT: the HOST INTRUDED condition is true for one or both replication 
hosts. 

• SERVER SUSPECT: the OBJECT COMPROMISED condition is true for the non- 
authenticating server. 

The application's adaptive behavior may include: 

• If the application is in the SERVER SUSPECT region, the client's requests will be redi- 
rected to the different non-replicated server object. 

• If the application is in HOST SUSPECT region, Proteus will be asked not to place replicas 
in the intruded host(s). 

In addition to the notification of crash faults, which Proteus already provided, the University 
of Illinois has enhanced Proteus under this project to provide notification for some value faults 
that could prove useful for a survivable application. 

Apart from the obvious benefit of replicating the inventory servers, the redundancy and 
monitoring as described above may lead to further adaptive behavior that improves the surviv- 
ability of the inventory application in future examples. For instance, when Proteus indicates that 
it cannot maintain the desired number of replicas under the existing circumstances, the applica- 
tion can add a new replication host. If the monitoring mechanism (via a system condition object) 
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indicates that a particular host is potentially compromised, that host could be removed from the 
list of replication hosts, thereby removing replicas from that host. Similarly, if the monitoring 
mechanism indicates the non-authenticating server is potentially compromised then the client's 
request will be redirected to the authenticating server. 

Future versions of Proteus can also manage and exploit diversity at lower levels to the ad- 
vantage of the application that aims to increase its survivability. For instance, replicated objects 
could be on different kinds of hosts such as Linux, Solaris and NT. Given this, the application 
could adapt to use only Solaris hosts if there is an NT virus alert. As another example, Proteus 
provides a choice of replication schemes (ranging from active to passive replication) and various 
voting mechanisms. Given that, if too many of the replication hosts are down, the application can 
switch from active to a more passive replication scheme and yet still provide some degree of de- 
pendability and fault tolerance. 

6. Lessons learned 
In the course of this research, we developed some experience about the nature of middleware 

adaptation, application assisted intrusion detection, and the feasibility of the approach to surviv- 
ability that integrates together a number of more localized protection and security mechanisms to 
achieve more effective coverage. In this section we discuss some of these areas: middleware 
supported adaptation, using multiple complementary IDSs, integrating off the shelf IDSs, inte- 
grating security property management, and application strategies that can complement infra- 
structure based detection and protection mechanisms. 

6.1.    Middleware Supported Adaptation 
Through this work we have demonstrated that it is possible to develop applications that can 

measure and adapt to the changes in their environment. Furthermore, we have demonstrated that 
such applications can be developed using a common set of middleware abstractions, similar to 
those that have simplified the development of distributed applications. This is in contrast to the 
ad hoc manner in which adaptive, QoS aware applications are currently built. 

The common set of abstractions that we have developed center around the need for an appli- 
cation to specify, measure, control, and adapt to changes in its environment. Thus we provide 
languages, abstractions, and runtime support to support contracts, which divide system proper- 
ties into regions of concern; system condition objects, which provide interfaces to measure and 
control system properties; and delegates and transitions, which trigger adaptation in the face of 
changing conditions. We learned early in this project that without such abstractions, the devel- 
opment of applications falls into two categories: 

• The development of applications using high-level programming paradigms, such as dis- 
tributed object computing, but that are brittle, don't scale well, and have little option but 
to fail when faced with unpredictable environments. 

• The development of robust, scalable, and adaptive applications, but in an ad hoc, non-re- 
usable manner. If DOC programming standards are used at all, they must be programmed 
around in order to access the non-functional systemic capabilities, resulting in code that is 
difficult to maintain. 

We have demonstrated that the abstractions and capabilities that we have produced support 
many dimensions of systemic, or QoS properties, including real-time, fault tolerance, depend- 
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ability, managed communication, security, and survivability. Supporting these abstractions in 
middleware has proven to have the following advantages: 

• It supports the addition of QoS concerns to existing applications 
• It supports the separation of the roles of application developer, who needs in-depth 

knowledge of the functional requirements of the application, from that of QoS developer, 
who needs in-depth knowledge of the possible environmental and system conditions. 

• It advances the concepts of aspect-oriented programming [Kic96a] and open implementa- 
tion [Kic96b], which advocate the separation of functional and QoS concerns. 

Furthermore, time and continued research has demonstrated that at least some of the abstrac- 
tions and capabilities that we have developed are being recognized as natural extensions to the 
DOC standard. When we began this work, no support existed in CORB A for the abstractions we 
developed (i.e., delegates, contracts, system condition objects, and gateways). Recent additions 
to the CORB A standard have incorporated some of the abstractions so that future versions of 
QuO will extend CORB A with fewer components, instead using features of the standard to 
achieve the same functionality. For example, the functionality of the delegate, which was not 
supported at all when we designed it, is now supported by CORB A's smart proxies and, to a 
limited degree, by CORB A interceptors. Likewise, many of the functions of our original QuO 
gateway are now supported by CORB A's pluggable protocols, in which our newest version of 
the QuO gateway is implemented. 

Further research will show whether the abstractions that we've developed are a complete set. 
We've already encountered a need for dimension-specific QoS languages, such as security policy 
languages like DTEL++ or real-time languages like TAO's RIDL. These are, so far, orthogonal 
to our QDL languages. 

6.2.    Multiple, Complementary IDSs and Managers 
It has been shown from an experiment conducted by MIT Lincoln Laboratory for DARPA 

that multiple IDS systems working together can be more effective in identifying real attacks. 
MIT LL evaluated a number of IDSs, testing them on a number of different types of attacks, and 
scoring each according to the number of attacks that it detected and the number of false alarms it 
raised. 

The results indicated that while none of the IDSs overwhelmingly detected most of the at- 
tacks, the hypothetical combination of the best detectors for each attack resulted in more than 
two orders of magnitude reduction in false alarm rates while improving detection accuracy over 
commercial and Government keyword-based systems [Dyn98]. This provides the motivation for 
a model where there are multiple IDSs operating concurrently, and the need to organize and inte- 
grate their operation to achieve intended application oriented improvements in survivability. 

One of the strengths of the QuO framework is that it provides simplified support for interfac- 
ing to multiple managers and mechanisms. Part of our current development and experimentation 
involves integrating multiple managers and mechanisms. The first example we developed, de- 
scribed in Section 5.3.1, combined a commercial off the shelf IDS with a custom developed (but 
simplified) one tailored for the specific need. The second, described in Section 5.3.2, uses the 
Proteus dependability manager in combination with the Tripwire IDS. This has two potential ap- 
plication survivability benefits. First, fault detection information collected routinely as part of 
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dependability support can be used to aid the intrusion detection system, and second, the recon- 
figurability of replication assets can be used to help recover from detected intrusions. 

The examples that we have developed, despite having limited interaction between managers, 
have delivered the expected benefits. Some managers, such as multiple IDSs, security policy 
managers, and dependability managers are complementary and can produce higher levels of 
service when used together. 

6.3.    Integrating COTS IDSs 
If the concept of using multiple special purpose IDS systems in concert is to be viable and 

extensible, then we need to be able to take off the shelf IDS systems and easily insert them into 
various application contexts. To test our approach to this type of integration, we used the exam- 
ple described in Section 5.3.1. The collection of intrusion detection systems available to us was 
limited, largely to those sufficiently mature under development as part of the DARPA Informa- 
tion Survivability program, and those inexpensively available commercially. From these we 
chose two to work with: Tripwire, a commercially available ID discussed earlier (and success- 
fully integrated with our concept example), and JAM, an experimental ID under development 
within the DARPA IS program. 

JAM [Sto97] is essentially a classifier system that employs learning and meta-learning tech- 
niques to build and refine the classifier. JAM has been used successfully to learn intrusion pat- 
terns in system traces [Dyn98]. 

One of the major problems we encountered in trying to integrate JAM with QuO is a mis- 
match of modes of operation. JAM currently operates in a batch mode. Although it is possible to 
ask it to classify a data set in an interactive manner, the current version does not provide any 
easy way to do it. Off-line usage provides only a small experimental footprint to complement the 
current runtime adaptation in QuO, either as a source of inputs for contract evaluation or as a 
mechanism to provide its service. Because JAM is geared towards stand alone usage with a GUI 
and not embedded usage as envisioned in integrating into a QuO environment, it did not have an 
appropriate API which could easily be used to integrate into QuO's system condition constructs. 
Additionally, it turns out to be a complex job to create the data definition and data sets that JAM 
would need in the context of and training for a new application such as integrating with QuO. 
Because of these issues, the experiment to integrate JAM as one of the ID systems in our adap- 
tive application context has been postponed, pending the addition of online usage interfaces to 
JAM. 

In general, the issues we encountered in integrating with Tripwire and in trying to use JAM 
fall into two broad categories: 

• Interface Requirements: How does an application interface with a COTS IDS? The best 
possibility would be a runtime service provided by the COTS IDS. A programmable API 
would be the next best choice. The minimal requirement is that it should be possible to run 
the IDS from a CORB A object and communicate results in and out. A runtime service or a 
programmable APIs make this task easier, but human oriented interfaces have been encap- 
sulated successfully as well, most often with less flexibility. 

• Integration Architecture: What is an appropriate level of integration? We think that the 
way we have architected the integration by means of a CORB A wrapper that acts as a peer 
of a QuO component is a general pattern of usage that will be repeated with other COTS 
systems. Depending on the layer in which the QuO component operates, the COTS system 
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may provide inputs to contract evaluation or may provide some service. If the COTS sys- 
tem is already a CORBA object itself, no CORBA wrapper will be needed. 

6.4. Integrating Security Property Management 
Based on our experience thus far with using OO-DTE in QuO, we can make several observa- 

tions. First, we learned that incorporating OO-DTE access control into QuO was a straightfor- 
ward development task. Because OO-DTE is implemented as CORBA interceptors, integrating it 
required only minimal changes to QuO code. Using OO-DTE successfully was largely a matter 
of setting up the policy and cryptographic certificates correctly for each application. Second, we 
expect that using OO-DTE will not be as straightforward in the presence of mechanisms that 
support other properties. For example: 

• Although access control in the presence of fault tolerant replication is conceptually simple 
(just give each replica the same access rights), the actual implementation appears harder. 
In addition to handling application-level invocations, the replicas must run some replica 
coordination protocol. It is not yet clear what access rights are required in this protocol. 

• Using access control in the presence of a realtime ORB [Sch98] will mean porting the ac- 
cess control mechanisms to an alternative ORB and ensuring interoperability between 
ORBs. 

Third, building security-aware QuO applications will mean allowing applications to have di- 
rect access to the security policy to inspect it and under certain circumstances with the appropri- 
ate permissions possibly to modify it. Currently this access is not possible. To make it possible 
we must encapsulate the OO-DTE policy in a CORBA object and define access methods for the 
policy. Once that is done, the access rights themselves must be access controlled according to 
some meta-level security policy. 

6.5. Applications Participating in Intrusion Detection 
Our work with the QuO framework, various property managers, and the integration of ID and 

security has shown that many of the QoS properties with which an application is concerned are 
the same QoS properties that can indicate an intrusion or attack. For example, by definition de- 
nial of service attacks will manifest themselves by an application losing some service upon 
which it is dependent. Likewise, flooding attacks, attacks on particular hosts, networks, or proc- 
esses can manifest themselves as changes in the system conditions monitored by QuO applica- 
tions. 

We illustrated in our example application described in Section 5.3.1 that QuO applications 
can specify normal and abnormal patterns of behaviors in their regions and recognize when the 
system is operating outside these regions. Many of these, especially if coded carefully, can indi- 
cate patterns of attack. Slow service, loss of network resources, abnormal responses by server 
objects, etc. can all indicate potential attacks. The application can aid IDSs by alerting them to- 
ward potential intrusions that should be analyzed or by indicating conditions in which multiple 
IDSs should be deployed. 

In addition, QuO's system condition objects and instrumentation normally used for bottleneck 
identification and to drive resource management decisions, can also be used to collect system 
information over time that might recognize intrusions that are difficult to recognize from small 
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contract <contract_name> ( 
syscond [ nowatch ] <idl_type> <impl_type> <sc_name>, 
callback <idl_type> <cb_name>, 

{ 
... ) 

[ static ] syscond [ nowatch ] [ prob« ] <impl_type> <name> (<arg> ); 

region <name> ( <predicate> ) { 
region <name> ( <predicate> ){...} 
transition <name> -> <name> { ... > 

precedences <region_name> 
} 

transition any -> <name> (...) 
transition <name> -> any { ... } 
transition inactive -> <name> { 
transition <name> -> inactive { 

precedences <region_name> ...; 
}; 

Figure 12: Representative CDL syntax 

windows or groups of events, such as slow degradations in service. This information can feed 
into off-line analysis capability, such as that currently provided by JAM. One weakness of 
anomaly detection IDSs is that they can be trained by intruders over time to recognize anomalous 
behavior as normal. An application could aid in detecting these types of intrusions by collecting 
information indicating slow, deliberate degradations of service or changes in behavior patterns. 

Finally, we have also shown, in the example application described in Section 5.3.2, that other 
property managers and mechanisms can also be useful in intrusion detection. We have concen- 
trated our initial efforts on using the Proteus dependability manager, which in normal usage 
would attempt to mask faults that could indicate intrusions, to collect information about fault 
patterns, as a means of helping recognize intrusions. However, other mechanisms, such as re- 
source management, realtime scheduling, and instrumentation, could also be focused on the job 
of intrusion detection. 

7. Syntax and Semantics of the Quality Description Languages 

7.1.    CDL Syntax and Semantics 
Figure 12 illustrates the representative syntax of a CDL contract. The contract definition starts 

with the keyword contract, followed by the name of the contract class and the list of contract 
parameters. The contract parameters are system condition objects and callback objects that are 
created outside the contract and passed in (e.g., because they are shared with other contract in- 
stances, the client, or other objects in the system). The contract parameters are one of the fol- 
lowing forms: 

syscond [nowatch] <idl_type> <impl_type> <name> 
callback <idl_type> <name> 
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The keyword syscond or callback indicates whether the parameter is a system condition ob- 
ject or a callback object; <idl_type> is the IDL class of the object; and <name> is the name by 
which the object is referenced in the contract. If the parameter is a system condition object, the 
name of the implementation class must also be specified (<impl_type>). System condition ob- 
jects can also be observed (i.e., a change in the system condition object triggers contract evalua- 
tion) or not (i.e., changes in the system condition object go unnoticed until the next contract 
evaluation). The default is for each system condition object to be observed. The optional key- 
word nowatch tags the system condition object as non-observed. 

Next is a list of system condition object declarations local to the contract. Each of these is 
identified by the keyword syscond. The keyword static preceding syscond is optional; the de- 
fault is non-static. Non-static system condition objects are local to each instance of a contract 
class, i.e., a new one is created each time an instance of the contract is instantiated. Static system 
condition objects are shared by all instances of a single contract class; one is created when the 
first instance of the class is instantiated. The other parts of the system condition object 
declaration are the implementation class of the object (<impl_type>), the local name of the 
object (<name>), and a list of actual parameters passed to the object constructor (<arg>...). The 
IDL type is not necessary because the object will be local to the contract class; i.e., it will 
manipulate it as a Java object, not a CORB A object. 

The next section of the contract definition contains declarations of regions, transitions, and 
precedences. Each region declaration can have declarations of regions, transitions, and prece- 
dences nested within it. There can be any number of levels of nested regions. Each region is de- 
clared by the keyword region, followed by a name, a predicate statement in parentheses ("(...)"), 
and a body in brackets ("{...}"). The body of a region can contain nested regions or it can be 
empty. 

The region declarations, transition declarations, and precedence declaration can be in any 
order. However, the declarations for regions referenced in transition or precedence statements 
should appear before they are used. Every contract will have at most one region at any level that 
is active at a time. However, region predicates can overlap and it is possible for the predicates of 
more than one region to be true at any given time. The precedences statement is a way for the 
programmer to specify which regions should be active if more than one has a predicate that is 
true. The precedences statement is optional; the default precedence is the order in which the re- 
gions are listed. 

Transitions specify behavior that is invoked when the active region changes. A transition 
need not be specified for every possible region change and no transitions need be specified for 
any level of region. A transition is specified using the keyword transition followed by two re- 
gion names separated by the operator "->", indicating a transition from the first region to the 
second region. One of the region names, but not both, can be replaced with one of the keywords 
any or inactive. The transition declarations are interpreted as follows: 

• transition <regionl> -> <region2> is triggered when the contract, with active region <re- 
gionl>, is evaluated and <region2> becomes the new active region. 

• transition any -> <regionl> is triggered when the contract, with an active region that is 
not <regionl>, is evaluated and <regionl> becomes the new active region. It doesn't mat- 
ter what region was active previously as long as it was not <regionl>. 

• transition <regionl> -> any is triggered when the contract, with active region <regionl>, 
is evaluated and another region, not <regionl>, becomes active. 
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• transition inactive -> <regionl> is triggered when the contract has no active region and it 
is evaluated with <regionl> becoming active. 

• transition <regionl> -> inactive is triggered when the contract, with active region <re- 
gionl>, is evaluated and no region becomes active, i.e., none of the region conditions is 
true. 

Each transition must have at least one region name in its declaration, i.e., the following have 
no meaning: 

• any -> any 
• inactive -> any 
• any -> inactive 
• inactive -> inactive 

The body of a transition, delineated by brackets ("{•••}") contains a list of methods to be in- 
voked when the transition is triggered. Each of these must be a method on a callback or a system 
condition object. The methods are separated into synchronous and asynchronous sets. Either 
synchronous or asynchronous behavior can be specified, or both. The contract will wait for syn- 
chronous callbacks to finish before it can be evaluated again. Asynchronous callbacks are 
spawned. Therefore, transition statements can have any of the following forms: 

transition <from_region> -> <to_region> { 
synchronous { <method_call> ...} 
asynchronous { <method_call>...} 

} 

transition <from_region> -> <to_region> { 
asynchronous { <method_call> ...} 
synchronous { <method_call> ...} 

} 

transition <from_region> -> <to_region> { 
synchronous { <method_call> ...} 

} 

transition <from_region> -> <to_region> { 
asynchronous { <method_call> ...} 

} 

The method calls in transition behavior can be methods on callback objects and system con- 
dition objects declared previously in the contract. Arguments can be passed to these methods, 
including constants of CORBA primitive types (e.g., long, char, string, double) or variables re- 
ferring to system condition objects. A variable referring to a system condition object can be 
passed as either an object, simply by using its name, or as the value held by the system condition 
object, by specifying a CORBA simple type for it in parentheses before the variable name. For 
example, the following transition behavior: 
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ReplMgr.adjust_degree_of_replication(ClientExpectedReplicas); 

passes ClientExpectedReplicas as an object, while the following: 

ReplMgr.adjust_degree_of_replication((long) ClientExpectedReplicas); 

passes the value of ClientExpectedReplicas as a long. 

7.2.    SDL Syntax and Semantics 
The basic structure of an SDL description is as follows: 

delegate behavior for interface interface_name  and contracts contract_list  is 
delegate_variabl e_declarafci ons 
adaptive_behavior_descriptions 
defaul t_behavior_description 

end delegate behavior; 

The interface_name must be an interface defined in an IDL file being parsed on the 
same quogen run. The interface name can be fully qualified, i.e., if the interface / is defined 
within a module M then inter face_name will be M::l. See the QuO Connector Setup Lan- 
guage (CSL) Reference Guide for further details on how to parse IDL files in a quogen run and 
how to instruct quogen to generate delegates for an interface. 

The con tract_list must be of the form cl, c2, ... where each ck is the name of a 
contract defined in a CDL file being parsed on the same quogen run. See the QuO Connector 
Setup Language (CSL) Reference Guide for further details on how to include CDL files to be 
parsed in a quogen run. 

The delegate_variable_declarations section allows the programmer (Le., the 
QoS developer) to specify variables that are initialized during the delegate creation and 
initialization time. These become member variables of the delegate class. Each 
delegate_variable_declaration specifies a local name to which it can be referred 
from within anywhere in the SDL file (Le., the scope of these variables are the whole SDL file). 

The adaptive_behavior_descriptions section contains a list of method calls 
and/or returns for which the delegate defines alternative behaviors. Each of these in turn 
specifies a list of contract regions and behavior descriptions that, if the contract region is active 
when the method is called and/or returned from, will cause the delegate to execute the 
corresponding behavior. 

The default_behavior_description allows the specification of behavior to be 
executed when any method that is not specified in the SDL description is called. 

7.2.1. Delegate Variable Declaration 
Delegate variables have the following basic syntax : 

<type name> <variable name> [<bind clause>]; 

where <type name> is either an IDL style fully qualified name (of the form module::type) or a 
simple name (e.g., long). The SDL code fragment in Figure 13 shows five variations (labeled by 
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Delegate behavior for interface Invlnstrumented 
and contracts InstrumentedContract is 

Inv altRemoteObjectl bind with name Inventory-Server;    //example 1 
Inv altRemote0bject2 bind; //example 2 
long my_count; //example 3 
Instrumentation inst bind with java_code { //example 4 

new Standardinstrumentation();}, 
with cplusplus_code { 

new Standardinstrumentation() ;}; 
string my_string bind with java_code{inst.genUID();},   //example 5 

with cplusplus_code{inst->genUID();}; 

Figure 13: Possible declarations of local variables inside a delegate. 

numbers 1 -5 in comments) of delegate variable declaration. These declarations generate pro- 
tected member variables of the delegate class. 

The <type_name> in a delegate variable declaration can be one of the following: 

• Basic CORBAIDL type - These map to the proper Java and C++ types according to the 
CORBA language mapping. 

• IDL-defined types - These are mapped to the proper Java or C++ type as defined by the 
respective language mapping. For Java, this means that it will figure out the proper pack- 
age name which could be influenced by the -p and -idl2package flags used at the code 
generator's command line. 

• QuO pseudo type - QuO pseudo types are types that are not defined in the quo IDL mod- 
ule but are assumed to exist (similar to CORBA pseudo types). Currently quo::COSHelper 
and quo::Connector are two quo pseudo interfaces. For Java these map to 
com.bbn.quo. [COSHelper | Connector] .For C++, these map to COSHelper* 
and Connector*. 

• Everything else - <type name> is dumped as a Java type (i.e. m: : n: : f oo as m. n. f oo) 
or a C++pointer type (m: :n: : foo asm: :n: : foo*) . 

If you specify a bind clause in a variable declaration (examples 1, 2, 4 and 5 in Figure 13), it 
produces two public member functions in the delegate class. One is an initializer method and the 
other is a setter method for the corresponding protected member variable. For instance the sec- 
ond declaration in Figure 13 produces the following two methods in C++: 

void initialize_altRemoteObject2(); 
void set_altRemoteObject2(Inv_ptr argl); 

assuming that Inv is defined as an interface in an IDL file that is parsed during the quogen run 
that produces the delegate (see the QuO Connector Setup Language (CSL) Reference Guide for 
how this is done). In Java these two look like: 

public void initialize_altRemoteObject2(); 
public voidset_altRemoteObject2(com.bbn.quo.examples.idsinv.gen.Inv argl); 

38 



public void initialize_my_string()   { 
my_string =  inst.genUID(); 

} 
(a) Java 

void initialize_my_string()   { 
my_string =  inst->genUlD(); 

} 

(b) C++ 

Figure 14: Code generated from example 5 in Figure 13 

assuming that the command line flags to quogen are set to instruct the idl2java compiler to gen- 
erate the Inv class in the com. bbn. quo. examples. idsinv. gen package. 

The setter methods simply take an argument of the appropriate type and set the corresponding 
variable. One can use the setter methods to set the variable to point to an already bound object. 

The initializer methods do what the bind clause in the corresponding declaration specifies. 
Currently the following types of bind options are supported: 

• Simple bind (example 2 in Figure 13) uses Visibroker's bind function to obtain a 
reference to a remote object stub. Visibroker provides a bind() method in the classes that it 
generates from IDL interfaces. QuO 2.1 uses Visibroker for Java and TAO for C++. If you 
try to use a simple bind declaration to generate a C++ delegate, you will get an SDL 
warning stating that bind is not supported for C++ (if you have configured your CSL file 
to print warning messages. See the QuO Connector Setup Language (CSL) Reference 
Guide for how to do this). 

• Bind with name (example 1 in Figure 13) uses quo::COSHelper to obtain a reference by 
resolving the string name specified in the declaration. 

• Bind with verbatim (examples 4 and 5 in Figure 13) uses the Java and/or C++ code 
specified in the declaration verbatim to initialize the corresponding variable. For instance, 
declaration (5) will generate the initializer methods in Figure 14. 

7.2.2. Adaptive Behavior Descriptions 
The adaptive_behavior_descriptions section consists of a (possibly empty) list of 

adaptive behavior descriptions, each keyed on a method call or return. Basically, each says, 
"when the client calls (or returns from) this remote method, look at the current state of QoS (as 
indicated by the active regions of a contract) and pick the corresponding behavior from the fol- 
lowing list." In doing so, it may perform some method instrumentation that in turn may need to 
declare some variables that are local to the method. To support this, each adaptive behavior de- 
scription is one of the following types: 

• call  fully_scoped_method_name  : 
method_variable_declarations 
method_instrumentation 
region_behavior_list default_behavior 

• return fully_scoped_method_name  : 
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Behavior Statement Explanation 
pass_through; Passes the method call through to the default 

remote object. 
pass by method_name; Invokes the alternate method methodjtame on 

the target object. 
pass to names Invokes the target method on the alternate 

object name. 
pass   [to target_name]   [by 
method_name]   with args 

Alters the parameter mapping of the call. This 
can be used in conjunction with redirecting to 
an alternate method and/or object. 

rebind rebind_spec; Alters the remote references in the delegate. 
throw exceptions Throws exception without making a remote 

call. 
java_code  {  code  ...   } Inserts code into the generated Java delegate. 
cplusplus_code  {  code  ...   } Inserts code into the generated C++ delegate. 

Table 1: SDL behavior statements 

method_instrumentation 
region_beha vi or_list de fault_beha vior 

The first form is used to specify the adaptive behavior in the call context (i.e., when the client 
calls a remote method). The second one specifies the adaptive behavior in the return context (i.e., 
upon returning from a remote method call). Note that method variables cannot be declared in the 
return context. This is because the scope of the variables declared in the call context spans the 
whole method, i.e., both the call and the return. 

The method__variable_declaration provides the ability to declare variables that are 
local to that method. The method_instrumentation provides the SDL support required 
for QuO instrumentation. The region_behavior_list is a list of statements of the fol- 
lowing form: 

region fully_scoped_region_name  : 
behavior_statement_list 

Note that an SDL file can declare multiple contracts in the contracts list in its header. The 
fully_scoped_region_name is a list of nested regions in one of the contracts in that list, 
separated by the IDL separator (': : ')• The first region_name in the list must always match a 
top-level region in one of the contracts, and each subsequent region_name must match a re- 
gion nested within the enclosing region. Note that there is no need to explicitly specify the con- 
tract name when describing a fully scoped region name. The code generators search the contract 
list for regions defined matching those in an adaptive behavior description. 

The behavior_statement_list specifies the behavior to be performed for the method 
and region. Table 1 lists the available SDL behavior statements. 

The de faul t behavior is a statement of the form: 
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call read: 
value_seq vl,v2,v3; 
Instrumentation::PerCall::Value_seq vl; 
string Connld; 

region InstrumentationOn: 

Figure 15: Example method variable declarations in SDL 

default: behavior_statement_list 

where behavior_statement_list is as defined above. This specifies the behavior used by 
the delegate for this method call and any regions not specified in the 
region_behavior_list. 

Method Variable Declaration. Local variables can be defined in methods as follows: 

<type_name> <variable_namel> [, <variable_name2> , <variable_nameN>]; 

The SDL fragment in Figure 15 describes some example method variable declarations. These 
declarations result in variables local to the corresponding method in the delegate class. There is 
no bind option for these variables. 

Method Instrumentation. SDL provides two simple ways to insert instrumentation code into 
the generated delegate, described in this section. 

In either the call or return context, one can specify verbatim code that will be used to instru- 
ment the method. This goes right before the region specific descriptions and the specified verba- 
tim code could either be marked as aprobejjoint or as a sigjnit. The SDL fragment in Figure 
16 presents an example. In this fragment the call and return context of only one method (read) is 
shown and the details of the region specific behavior is omitted. 

The verbatim code marked as sigjnit is used to initialize the properties field of SignalEvent 
that is used as an argument for the function that performs contract evaluation. 

The verbatim code marked as probe jpoint gets inserted in the method body of the delegate 
class right before contract evaluation takes place in the call or return context. This is used as a 
mechanism to instantiate and use the method variables. The code inserted this way gets executed 
whenever a CORBA invocation goes through a delegate. Using this kind of code instrumentation 
one can perform various measurements and control operation on a per call basis. See the QuO 
Toolkit Version 2.1 User's and Programmer's Guide for more details about instrumentation. 

Redirecting method calls. The Pass By and Pass To features can be used to direct a method 
call to a different target. Pass By invokes a different method on the same target object. 

As illustrated in Figure 17a, when the client calls the method read, the read method will be 
dispatched to the delegate's default remote object without any parameter mapping for all contract 
regions except for AccessSuspect. When the current contract region is AccessSuspect, then in- 
stead of read method, authenticatedjread will be dispatched to the delegate's remote object. The 
actual parameters of the call via authenticatedjread will be the same parameters with which read 
was invoked. Note that in order for this to succeed, read and authenticated_read must have con- 
forming signatures and authenticatedjread must be available in the interface. 
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Delegate behavior for interface Invlnstrumented and 
contracts InstrumentedServer is 

//SDL variables 
Inv altRemoteObjl bind with name InventoryServer; 
Instrumentation inst bind with 

java_code{ new Standardinstrumentation();}, 
cplusplus_code { new Standardinstrumentation();}; 
//Adaptation specs for read method: call context 
call read: 

//method variables 
Method_id m; 
Probe_point java_code { m = "read"; 

inst.probel(m);}, 
cplusplus_code  { m = "read"; 

inst->probel(m);}; 
sig_init java_code { inst.values(); }, 

cplusplus_code { inst->values();}; 
region InstrumentationOn: 
region InstrumentationOff: ... 
default: .. . 

//Adaptation specs for read method: return context 
return read: 

Probe_point java_code { m = "read"; 
inst.probe2(m);}, 

cplusplus_code  { m = "read"; 
inst->probe2(m); }; 

sig_init java_code { inst.set_value(); }, 
cplusplus_code { inst->set_value(); }; 

region InstrumentationOn: ... 
region InstrumentationOff: ... 
default : ... 

//SDL default: 
default: ... 

end delegate behavior; 

Figure 16: Example of using SDL to instrument code 

PASS TO allows us to dispatch to alternative remote objects instead of the default remote 
object. Figure 17b provides an example. When the client invokes read and the current region is 
AccessSuspect, then read is invoked on the alternate remote object authenticating_server. The 
parameters of this dispatched call are the same as the parameters with which read was invoked. 

It is possible to combine PASS TO and PASS BY to dispatch a different method to an alter- 
native remote object, as illustrated in Figure 17c. When the read method is invoked and the cur- 
rent contract region is AccessSuspect, the delegate will actually dispatch the authenticated_read 
method on the remote object authenticating „server. The actual parameters of the dispatched call 
will be the same as the parameters with which read was invoked. 

Parameter Mapping. In conjunction with PASS TO and/or PASS BY it is now possible to 
do parameter mapping. This is specified by means of a with clause in the PASS TO and/or 
PASS BY specification: 

pass [to <obj>] by <method> with args; 
pass to <obj> [by <method>] with args; 

The args can be a list of identifiers or one of the following operations on a special variable 
this_method_params: 
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call read: 
region AccessSuspect: 
pass by authenticated_read; 

default: 
pass_through; 

(a)     Example of Pass By 
call read: 

region AccessSuspect: 
pass to authenticating_server; 

(b)     Example of Pass To 
call read: 

region AccessSuspect: 
pass to authenticating_server 

by authenticated_read; 

(c) Example of Pass To and By 

Figure 17: Examples of redirecting method calls 

append() 
prepend() 
subset() 

Figure 18 illustrates several example variations. The special variable 
this_method_params denotes a reserved object that always refers to the actual parameters 
of the currently invoked method. For example, if the currently invoked method had actual pa- 
rameters x, y, z respectively, the current value of this_method_params is (x, y, z). 

If a comma separated list of identifiers are provided in the wi th clause then that list becomes 
the actual parameters of the dispatched call. For instance in example 1 in Figure 18, the 
dispatched call looks like: 

quo_remoteObj.read(al,a2,a3); //  Java 
quo_remoteObj->read(al;a2,a3);       //  C++ 

Examples 2, 3 and 4 in Figure 18 illustrate using the functions append (), prepend () or 
subset (). Assuming that this_method_params is (x, y, z), the dispatched call for exam- 
ple 2 is: 

altRemoteObjl.bar(x, y, z, al, a2);   // Java 
altRemoteObjl->bar(x, y, z, al, a2);  // C++ 

pass by read with al,a2,a3; 
pass to altRemoteObjl by bar with this_method_params.append(al,a2) 

to altRemoteObjl by bar with this_method_params.prepend(al,a2; 
to altRemoteObjl by bar with this_method_params.subset(0,1); 

 Figure 18: Examples of parameter mapping 

pass 
pass 

//l 
112 
//3 
//4 
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For example 3 it is: 

altRemoteObjl.bar(al, a2, x, y, z) ;   // Java 
altRemoteObjl->bar(al, a2, x, y, z) ;  // C++ 

Finally, for example 4 it is: 

altRemoteObjl.bar(x);   // Java 
altRemoteObjl->bar(x);  // C++ 

The two arguments of subset (fromjncluding, upto_excluding) define the subset of 
this_method_params.  The second argument is optional. If it is not specified it means the 
rest of the list starting from the first argument. The first argument cannot be less than 0, if the 
second argument is larger than the length of this_method_params it is treated as if it was 
not specified. As in all the alternative behavior descriptions, the method signature must match 
the arguments being passed to it. 

Remote References. Reestablishing the remote references maintained by the delegate is pos- 
sible using the rebind feature of SDL, which can be used in both call and return contexts. SDL 
supports the following uses of rebind: 

rebind; 
rebind x; 
rebind to Interface; 
rebind x to Interface; 
rebind with name objName; 
rebind x with name Objname; 
rebind to Interface with name ObjName; 
rebind x to Interface with name ObjName; 

Rebind variations without name (i.e., those that do not have with name ObjName in the rebind 
clause) are not supported in C++. This is because the bind feature of Visibroker is not part of the 
defined CORBA standard. In ORBs that do not provide it, one needs to obtain an IOR in some 
other manner, such as using CORBA's naming or trading service. 

When the variable name is not provided in the rebind clause (e.g., rebind;), it means that 
the delegate's default remote object will be rebound. For all cases where a name is available (i.e., 
with name objName is present in the rebind clause), the object reference is reestablished by re- 
solving objName and narrowing it to the appropriate type. For all other cases an appropriate 
bind () method provided by Visibroker is used. 

7.3.    CSL Syntax and Semantics 
Each CSL file consists of the following code sections: 

• Connector Attribute Specifications 
• Usage Specification of the connectparams Connector Attributes 
• Include Statements 
• Object Definitions 
• Function Calls 
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Attribute Sample value Possible values Description 
target "client" "client", 

"server" 
Specifies whether the connector code and delegate 
code is for a client side or server side delegate. 

class "MyConnjava" String Name of the connector class being generated in the 
target language. The connector class is an 
implementation of the interface/abstract class 
specified by interface 

interface "Connlnf.java" String Name of the connector interface class being 
generated in the target language. The connector 
interface class is an interface/abstract class for the 
implementation class specified by class. 

target_interface mylDLmodule: 
:myServerSide 
Obj 

Fully qualified 
IDL interface 
name 

For server side connectors, specifies the IDL 
interface name of the server side delegate 

connectparams (in mod::type 
obj, in 
org::omg::COR 
BA::ORB 
myorb, in 
boolean gui) 

Parameter list 
in the syntax of 
CORBA IDL 

Specifies the signature of the connect method that 
is generated from the CSL code. The syntax is the 
same as CORBA IDL syntax. 

codeloglevel "high" "none", "low", 
"high" 

Determines the amount of debugging or logging 
messages are included in the generated connector 
code. 

cppinclude "quo.h" String Specifies the include files for C++ connector 
classes. Multiple includes are separated by spaces. 

language "Java" "java", "c++" The target language generated for connectors and 
delegates. Note: contract and transition code is 
always generated in Java. 

package "my.java.pkg" String The package in which all generated Java classes 
will be placed. This works in conjunction with 
idl2package 

idl2package "::myModule" 
"my.other.pkg" 

module 
package... 

Describes a mapping between modules and 
packages. Identifiers indicated to be in a module in 
the list are mapped to the corresponding package. 
This works like Visibroker's idl2package feature. 

idlpreproc_include "mylDLdir/" 
"quo/" 

String... The include path for the IDL preprocessor. The IDL 
preprocessor looks in these directories for included 
IDL files. Multiple includes are separated by 
spaces. 

idlpreproc_only "yes" "yes", "no" If yes, runs the IDL preprocessor only and sends 
the output to stdout 

idlpreprocjocation "usr/local/bin" String 
(pathname) 

The path specifying the location of the IDL 
preprocessor. 

Table 2: Connector attribute specifications in CSL 

• Publishing Object References 

Connector Attribute Specifications. Connector Attribute Specifications are used to define 
static properties of the connector. They can be specified in either of the following ways: 

• on the command line at the time of invocation of quogen 
• in the Connector Attribute Specifications section of the CSL file 
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Command line argument Description 
-1 language Specifies the target language generated for connectors 

and delegates. Note: contract and transition code is 
always generated in Java. Overrides the language 
attribute in CSL. 

-p package Specifies the package in which all generated Java classes 
will be placed. This works in conjunction with 
idl2package. Overrides the package attribute in CSL. 

-idl2package "module package Describes a mapping between modules and packages. 
Identifiers indicated to be in a module in the list are 
mapped to the corresponding package. This works like 
Visibroker's idl2package command line argument and 
overrides the idHpackage attribute in CSL. 

-I includedir The include path for the IDL preprocessor. The IDL 
preprocessor looks in these directories for included IDL 
files. This overrides the idlpreprocjnclude attribute in 
CSL. 

-E Runs the IDL preprocessor only and sends the output to 
stdout. Overrides the idlpreproc_only attribute in CSL. 

-Yp,<palh> Specifies the location of the IDL preprocessor. 
Overrides the idlpreprocjocation in CSL. 

-d prefixdir appends prefixdir to the filenames of all generated files 
-0 [none 1 errors 1 warnings 1 data 1 all] sets the level of debug information being produced 

during code generation 
-V Prints version information 
-V Traces compilation stages 
-u Prints usage information 
-w Suppresses IDL compiler warning messages 
-M Reports all files being generated to stdout without 

generating the files 
-C Suppresses typechecking; continues code generation 

even after encountering typechecking errors 

Table 3: Code generator command line arguments 

Table 2 gives a summary of the connector properties that can be specified in the Connector 
Attribute Specification Section of CSL. Table 3 summarizes the command line arguments that 
are accepted by the code generator. In the case of conflicting specifications (e.g., 'quogen -1 
Java...'and language "c++'"), the command line arguments override the corresponding CSL en- 
tries. 

Usage specification of connectparams. The Usage Specification of Connectparams section 
specifies how each connector argument (specified by the connectparams part of the Connector 
Attribute Specification section in CSL) is used. It specifies whether each argument is to be used 
as an ORB, a Remote Object, the QuO Kernel, a Callback object, a System Condition object, a 
Value of Kernel Debug or Kernel GUI. If there is no connectparams attribute specification then 
there is no need for this section in the CSL file. 

This section consists of several statements of the form: 

use <identifier> as [ quokernel | kerneldebugval | kernelguival | 
syscond | callback | remoteobj | orb ] 

where <identifier> is the name of a parameter specified in connectparams. Figure 19 shows an 
example of the connectparams and use statements. 
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conned ̂params (in boolean kg, in long kd, in quo::ValueSC vl. 
in quo::ValueSC v2, in CORBA: :ORB o, 
in quo::Callback cl, in Invlnstrumented m, 
in quo:: QuoKernel qk) 

• •• 
use qk as quokernel 
use kg as kernelguival 
use kd as kerneldebugval 
use vl as syscond 
use v2 as syscond 
use o as orb 
use cl as callback 
use m as remoteobj 

Figure 19: Example of connectparams and use statements i inCSL 

Include statements. The Include section of CSL specifies the CDL, SDL, and IDL files that 
comprise a QuO application. 

CSL Object specifications. You can specify the following five different types of objects in 
CSL objects statements: 

• remote CORBA objects 
• system condition objects 
• callback objects 
• contract objects 
• delegate objects. 

We refer to these collectively as CSL objects. CSL provides the following different ways to 
describe how an object is located or instantiated: 

1. Local instantiation 
<type> <objectname> = new <implementationType> (<params>); 
Example: Counter myRemoteObj = new Counterlmpl (); 

2. Reading an IOR reference from a file 
<type> <objectname> = fileior (<filename>); 
Example: Counter myRemoteObj = fileior ("Counter.ior"); 

3. Calling a factory method 
<type> <objectname> = funcall <other_objectname>.<functionname>(<params>); 
Example: Counter myRemoteObj = funcall nameServer.getObject("MyCounter"); 

4. Getting an appropriately narrowed reference to a CORBA object from a method 
call 
<type> <objectname> = narrowfuncall <other_objname>.<fnname>(<params>); 
Example: Counter myRemObj = narrowfuncall someObj.getObj("MyCounter"); 

5. Getting an appropriately narrowed reference to a CORBA object from a name- 
server 
<type> <objectname> = resolveName (<nameserver>,<String>); 
Example: Counter myRemoteObj = resolveName (corbaNameServer, "MyCounter"); 
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Remote objects are recognized by having a type defined as an interface in one of the included 
IDL files. System condition objects are CORBA objects for an IDL interface that extends 
quo::SysCond. Callback objects are CORBA objects for an IDL interface that extends 
quo::Callback. QuO contracts are defined using CDL (see the CDL Reference Guide). The in- 
stantiation of each contract object is defined by the instantiation of the contract class (i.e., the 
name of the contract class as specified in CDL) and is passed the system condition objects and 
callback objects that the contract uses. Delegates are defined by a combination of SDL descrip- 
tions (which describe delegates' behaviors), IDL descriptions (which describe delegates' signa- 
tures and types), and CDL descriptions (which describe the delegates' decision possibilities). 

The connector object is a subclass of the top-level delegate class (i.e., the delegate that the cli- 
ent or server accesses). There might be many layers of delegates. CSL provides the following set 
of commands to initialize delegates: 

• returndelegate <objectname> (<remote_objectname>, <contract_objectname>); 
• makedelegate <objectname> (<remote_objectname>, <contract_objectname>); 

The returndelegate command instantiates the top-level delegate. The makedelegate command 
instantiates lower-level, i.e., not top-level, delegates. 

The following pseudocode demonstrates how to initialize a delegate for an IDL interface and 
three contracts. Assume r is a reference to a remote object, and cl, c2, and c3 are instantiated 
contracts. 

makedelegate delegate_bottom (r, c3); 
makedelegate delegate_middle (delegate_bottom, c2); 
returndelegate delegate_top (delegate_middle, cl); 

CSL will instantiate delegate_top, delegate_middle, and delegate_bottom, initialize them, and 
hook them up as shown. The client will make calls to delegate_top as if it were the remote object 
stub. Delegate_top will pass calls through to delegate_middle as if it were the remote object stub, 
and delegate_middle will pass calls through to delegate_bottom as if it were the remote object. If 
system state, as measured by the three contracts, dictates that the call should be passed through to 
the remote object, then delegate_bottom will pass the call through to the actual stub for r. 

The server side top-level delegate is an implementation for the remote interface, rather than a 
wrapper around the stub as on the client side, so the <remote_obj ectname> argument is 
omitted. 

Function Calls. Once references to all CSL objects have been instantiated, function calls can 
be performed on them and on any parameters to the connect method. Typical uses of function 
calls include initialization calls (e.g., use of accessor methods on delegates to initialize variable 
bindings) and calls on name server objects. 

The syntax of function calls is as follows: 

funcall <objectname> . <functionname> ( <functionargs> ); 

The method <functionname> is executed on the object <objectname> with parameters 
<functionargs>. 

7.3.1. Class Hierarchy of Code Generated from CSL 
The QuO code generator generates the following files from the CSL specification: 
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• A file (either C++ or Java) containing the top-level interface for the connector. The file- 
name and the class name are derived from the value specified for the interface variable in 
the CSL Connector Attribute Specifications section. 

• A file (either C++ or Java) containing the connector class. The programmer uses the class 
variable in the CSL Connector Attribute Specifications section to specify the name of the 
class. The class inherits from the interface class and from the top-level delegate. 

• Java files for the contracts and transitions specified by the CDL files included in the CSL 
file. 

• C++ or Java code for the delegates referenced in the CSL code and specified in SDL. 
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